Advertisement

Journal of Thermal Spray Technology

, Volume 27, Issue 7, pp 1177–1186 | Cite as

Predicting the Load-Carrying Capacity and Wear Resistance of Duplex-Coated Low-Strength Alloys for Severe Service Ball Valves

  • M. Laberge
  • E. Bousser
  • J. Schmitt
  • M. Koshigan
  • T. Schmitt
  • F. Khelfaoui
  • S. Isbitsky
  • L. Vernhes
  • J. E. Klemberg-Sapieha
Peer Reviewed

Abstract

The load-carrying capacity and wear resistance of a duplex-coated 316 stainless steel were determined, and a finite element numerical approach was developed to predict and corroborate experimental observations. Low-strength alloys are generally used for highly demanding valve applications due to their superior chemical stability, galvanic corrosion resistance, and lower susceptibility to stress corrosion cracking failure. Hardfacing (using thermal spraying, laser cladding, or plasma transferred arc welding) is currently the most common solution to protect valve components. Hardfacing provides a thick, hardened case that significantly improves tribological performance. However, hardfaced layers provide lower wear resistance compared to vacuum-deposited hard coatings. One solution to further improve hardfacing performance is a duplex approach, which combines the two processes. This study investigates the following materials: a 316 stainless steel base hardfaced with laser-cladded Co-Cr superalloy and topped with a CVD nanostructured W-WC coating. Tribological properties of three configurations were assessed for their ability to delay initiation of plastic deformation and surface cracking under quasistatic loading and for their resistance to dry reciprocal sliding wear. The results demonstrate that finite element modeling allows numerical prediction and comparison of the load-carrying capacity and wear resistance of duplex-coated AISI 316 stainless steel.

Keywords

hybrid coating systems laser cladding load-carrying capacity mechanical modeling tribomechanical properties wear-resistant coatings 

References

  1. 1.
    L. Vernhes et al., Nanostructured and Conventional Cr2O3, TiO2, TiO2-Cr2O3 Thermal-Sprayed Coatings for Metal-Seated Ball Valve Applications in Hydrometallurgy, J. Therm. Spray Technol., 2016, 25(5), p 1068-1078CrossRefGoogle Scholar
  2. 2.
    H. Chiang, C. Wang, M. Wu, and E. Wolff-Klammer, Investigation of Stress Corrosion Cracking on Brass Valves with Laboratory Testing and X-ray Computed Tomography, Corrosion, 2012, 2012 Google Scholar
  3. 3.
    T.C. Dickenson, Valves, Piping, and Pipelines Handbook, Elsevier, New York City, 1999Google Scholar
  4. 4.
    B.K. Holmes and S. Bond, Sour Service Limits of Dual-Certified 316/316L Austenitic Stainless Steel and Weldments, Corrosion, 2010, 2010 Google Scholar
  5. 5.
    D. Bush, J. Brown, and K. Lewis, An Overview of NACE International Standard MR0103 and Comparison with MR0175, Corros, 2004, 2004 Google Scholar
  6. 6.
    NORSOK Standard M-001, Materials Selection, 2014Google Scholar
  7. 7.
    ASTM International, Standard Guide for Evaluating Nonmetallic Materials for Oxygen Service, ASTM International, West Conshohocken, 2015Google Scholar
  8. 8.
    P.F. Mendez et al., Welding Processes for Wear Resistant Overlays, J. Manuf. Process., 2014, 16(1), p 4-25CrossRefGoogle Scholar
  9. 9.
    L. Vernhes, M. Azzi, E. Bousser, T. Schmitt, J.M. Lamarre, and J.E. Klemberg-Sapieha, Hybrid Co-Cr/W-WC and Ni-W-Cr-B/W-WC Coating Systems, J. Therm. Spray Technol., 2016, 25(1-2), p 346-356CrossRefGoogle Scholar
  10. 10.
    K. Holmberg, A. Laukkanen, H. Ronkainen, K. Wallin, and S. Varjus, A Model for Stresses, Crack Generation and Fracture Toughness Calculation in Scratched TiN-Coated Steel Surfaces, Wear, 2003, 254(3), p 278-291CrossRefGoogle Scholar
  11. 11.
    L. Vernhes, M. Azzi, and J.E. Klemberg-Sapieha, Alternatives for Hard Chromium Plating: Nanostructured Coatings for Severe-Service Valves, Mater. Chem. Phys., 2013, 140, p 522-528CrossRefGoogle Scholar
  12. 12.
    G. Cassar, S. Banfield, J.C.A.-B. Wilson, J. Housden, A. Matthews, and A. Leyland, Tribological Properties of Duplex Plasma Oxidised, Nitrided and PVD Coated Ti-6Al-4V, Surf. Coat. Technol., 2011, 206(2-3), p 395-404CrossRefGoogle Scholar
  13. 13.
    Y. Yusuf, Z. Mohd Rosli, J.M. Juoi, O. Nooririnah, and U.A.A. Azlan, The Influence of the Microwave Plasma Nitrided Ti6Al4V Substrate Properties to the Duplex Coating Performance, Appl. Mech. Mater., 2015, 761, p 68-72CrossRefGoogle Scholar
  14. 14.
    R. Rodríguez-Baracaldo, J.A. Benito, E.S. Puchi-Cabrera, and M.H. Staia, High Temperature Wear Resistance of (TiAl)N PVD Coating on Untreated and Gas Nitrided AISI, H13 Steel with Different Heat Treatments, Wear, 2007, 262(3-4), p 380-389CrossRefGoogle Scholar
  15. 15.
    C. Li and T. Bell, Corrosion Properties of Active Screen Plasma Nitrided 316 Austenitic Stainless Steel, Corros. Sci., 2004, 46(6), p 1527-1547CrossRefGoogle Scholar
  16. 16.
    L. Nosei, S. Farina, M. Ávalos, L. Náchez, B.J. Gómez, and J. Feugeas, Corrosion Behavior of Ion Nitrided AISI, 316L Stainless Steel, Thin Solid Films, 2008, 516(6), p 1044-1050CrossRefGoogle Scholar
  17. 17.
    E. Bemporad, M. Sebastiani, M.H. Staia, and E. Puchi Cabrera, Tribological Studies on PVD/HVOF Duplex Coatings on Ti6Al4V Substrate, Surf. Coat. Technol., 2008, 203(5-7), p 566-571CrossRefGoogle Scholar
  18. 18.
    J.A. Picas, S. Menargues, E. Martin, C. Colominas, and M.T. Baile, Characterization of Duplex Coating System (HVOF + PVD) on Light Alloy Substrates, Surf. Coat. Technol., 2017, 318, p 326-331CrossRefGoogle Scholar
  19. 19.
    F. Liu, C. Liu, S. Chen, X. Tao, and Y. Zhang, Laser Cladding Ni-Co Duplex Coating on Copper Substrate, Opt. Lasers Eng., 2010, 48(7-8), p 792-799CrossRefGoogle Scholar
  20. 20.
    F. Casadei and M. Tului, Combining Thermal Spraying and PVD Technologies: A New Approach of Duplex Surface Engineering for Ti Alloys, Surf. Coat. Technol., 2013, 237, p 415-420CrossRefGoogle Scholar
  21. 21.
    G. Bolelli et al., Thermally Sprayed Coatings as Interlayers for DLC-Based Thin Films, J. Therm. Spray Technol., 2009, 18(2), p 231-242CrossRefGoogle Scholar
  22. 22.
    E. Bemporad, M. Sebastiani, F. Casadei, and F. Carassiti, Modelling, Production and Characterisation of Duplex Coatings (HVOF and PVD) on Ti-6Al-4V Substrate for Specific Mechanical Applications, Surf. Coat. Technol., 2007, 201(18), p 7652-7662CrossRefGoogle Scholar
  23. 23.
    Y.N. Zhuk, Hardide™: Advanced Nano-Structured CVD Coating, Int. J. Microstruct. Mater. Prop., 2007, 2(1), p 90-98Google Scholar
  24. 24.
    W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7, p 1564-1583CrossRefGoogle Scholar
  25. 25.
    ISO 26443:2016, Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics). Rockwell Indentation Test for Evaluation of Adhesion of Ceramic Coatings Google Scholar
  26. 26.
    ASTM International, Standard Test Method for Linearly Reciprocating Ball-on-Flat Sliding Wear, ASTM International, West Conshohocken, 2016Google Scholar
  27. 27.
    L.-D.K.U. Manual and I. Volume, Version 971, vol 7374, Livermore Softw. Technol. Corp., 2007, p. 354Google Scholar
  28. 28.
    S.-S. Chang, H.-C. Wu, and C. Chen, Impact Wear Resistance of Stellite 6 Hardfaced Valve Seats with Laser Cladding, Mater. Manuf. Process., 2008, 23(7), p 708-713CrossRefGoogle Scholar
  29. 29.
    M.Z. Huq and J.-P. Celis, Expressing Wear Rate in Sliding Contacts Based on Dissipated Energy, Wear, 2002, 252(5-6), p 375-383CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • M. Laberge
    • 1
  • E. Bousser
    • 1
  • J. Schmitt
    • 1
  • M. Koshigan
    • 1
  • T. Schmitt
    • 1
  • F. Khelfaoui
    • 2
  • S. Isbitsky
    • 2
  • L. Vernhes
    • 2
  • J. E. Klemberg-Sapieha
    • 1
  1. 1.Engineering Physics DepartmentPolytechnique MontréalMontrealCanada
  2. 2.VelanSaint-LaurentCanada

Personalised recommendations