Journal of Thermal Spray Technology

, Volume 27, Issue 6, pp 914–923 | Cite as

Evolution of Residual Stresses in PS-PVD Thermal Barrier Coatings on Thermal Cycling

  • Jiasheng Yang
  • Huayu Zhao
  • Xinghua Zhong
  • Jinxing Ni
  • Yin Zhuang
  • Liang Wang
  • Shunyan TaoEmail author
Peer Reviewed


Plasma spray-physical vapor deposition (PS-PVD) is an advanced technique to fabricate quasi-columnar structured thermal barrier coatings (TBCs) with excellent thermal cyclic lifetime. In this study, PS-PVD TBCs were investigated via burner rig test. The residual stresses in both of the topcoat layer and the thermally grown oxide (TGO) scale were measured non-destructively using Raman spectroscopy and Cr3+ photoluminescence piezo-spectroscopy, respectively. Evolution of the microstructures and distribution of residual stresses in such kind structured TBCs before and after thermal cycling test were investigated. The accumulated tensile stress in the as-sprayed ceramic topcoat changed to compressive state after 100 cycles and then gradually increased. In addition, the mapping compressive stresses in the TGO measured through the ceramic topcoat surface decreased rapidly and then essentially maintained at a relatively stable state with further testing. Moreover, the pre-heating of the bondcoat could significantly affect the stress distribution in the TGO, in contrast, no obviously influence on the stresses in the YSZ topcoat.


photoluminescence piezo-spectroscopy (PLPS) plasma spray-physical vapor deposition (PS-PVD) residual stresses thermal barrier coatings (TBCs) thermal cyclic test 



This work was jointly supported by the National natural Science Foundation (NSFC) under the Grant No. 51671208, Natural Science Foundation of Shanghai (No. 17ZR141Z200) and Laboratory foundation of Chinese Academy of Sciences (Grant No. 16S084).


  1. 1.
    D.R. Clarke and C.G. Levi, Materials Design for the Next Generation Thermal Barrier Coatings, Annu. Rev. Mater. Res., 2003, 33, p 383-417CrossRefGoogle Scholar
  2. 2.
    P. Fauchais, Understanding Plasma Spraying, J. Phys. D Appl. Phys., 2004, 37, p 86-108CrossRefGoogle Scholar
  3. 3.
    K. Von Niesen, M. Gindrat, and A. Refke, Vapor Phase Deposition Using Plasma Spray-PVD™, J. Therm. Spray Technol., 2010, 19(1/2), p 502-509CrossRefGoogle Scholar
  4. 4.
    A. Hospach, G. Mauer, R. Vaßen, and D. Stöver, Columnar-Structured Thermal Barrier Coatings (TBCs) by Thin Film Low-Pressure Plasma Spraying (LPPS-TF), J. Therm. Spray Technol., 2011, 20(1/2), p 116-120CrossRefGoogle Scholar
  5. 5.
    K.V. Niessen and M. Gindrat, Plasma Sprayed-PVD: A New Thermal Spray Process to Deposit Out of the Vapor Phase, J. Therm. Spray Technol., 2011, 20(4), p 736-743CrossRefGoogle Scholar
  6. 6.
    A. Hospach, G. Mauer, R. Vaßen, and D. Stöver, Characteristics of Ceramic Coatings Made by Thin Film Low Pressure Plasma Spraying (LPPS-TF), J. Therm. Spray Technol., 2012, 21(3–4), p 435-440CrossRefGoogle Scholar
  7. 7.
    M. Goral, S. Kotowski, A. Nowotnik, M. Pytel, M. Drajewicz, and J. Sieniawski, PS-PVD Deposition of Thermal Barrier Coatings, Surf. Coat. Technol., 2013, 237, p 51-55CrossRefGoogle Scholar
  8. 8.
    G. Mauer, M.O. Jarligo, S. Rezanka, A. Hospach, and R. Vaßen, Novel Opportunities for Thermal Spray by PS-PVD, Surf. Coat. Technol., 2015, 268, p 52-57CrossRefGoogle Scholar
  9. 9.
    G. Mauer, A. Hospach, and R. Vaßen, Process Development and Coating Characteristics of Plasma Spray-PVD, Surf. Coat. Technol., 2013, 220, p 219-224CrossRefGoogle Scholar
  10. 10.
    G. Mauer, A. Hospach, N. Zotov, and R. Vaßen, Process Conditions and Microstructures of Ceramic Coatings by Gas Phase Deposition Based on Plasma Spraying, J. Therm. Spray Technol., 2013, 22(2/3), p 83-89CrossRefGoogle Scholar
  11. 11.
    S. Rezanka, G. Mauer, and R. Vaßen, Improved Thermal Cycling Durability of Thermal Barrier Coatings Manufactured by PS-PVD, J. Therm. Spray Technol., 2012, 23(1/2), p 182-189Google Scholar
  12. 12.
    L.H. Gao, H.B. Guo, L.L. Wei, C.Y. Li, and H.B. Xu, Microstructure, Thermal Conductivity and Thermal Cycling Behavior of Thermal Barrier Coatings Prepared by Plasma Spray Physical Vapor Deposition, Surf. Coat. Technol., 2015, 276, p 424-430CrossRefGoogle Scholar
  13. 13.
    R.A. Miller, Thermal Barrier Coatings for Aircraft Engines: History and Directions, J. Therm. Spray Technol., 1997, 6(1), p 35-42CrossRefGoogle Scholar
  14. 14.
    R. Vassen, A. Stuke, and D. Stöver, Recent Development in the Field of Thermal Barrier Coatings, J. Therm. Spray Technol., 2009, 18(2), p 181-186CrossRefGoogle Scholar
  15. 15.
    D.R. Clarke and C.G. Levi, Materials Design for the Next Generation Thermal Barrier Coatings, Annu. Rev. Mater. Res., 2003, 33, p 383-417CrossRefGoogle Scholar
  16. 16.
    A. Rabiei and A.G. Evans, Failure Mechanisms Associated with the Thermally Grown Oxide in Plasma Sprayed Thermal Barrier Coatings, Acta Mater., 2000, 48, p 3963-3976CrossRefGoogle Scholar
  17. 17.
    O. Trunova, T. Beck, R. Herzog, R.W. Steinbrech, and L. Singheiser, Damage Mechanisms and Lifetime Behavior of Plasma Sprayed Thermal Barrier Coating Systems for Gas Turbines-Part I: Experiments, Surf. Coat. Technol., 2008, 202, p 5027-5032CrossRefGoogle Scholar
  18. 18.
    E.A.G. Shillington and D.R. Clarke, Spalling Failure of a Thermal Barrier Coating Associated with Aluminum Depletion in the Bond-Coat, Acta Mater., 1999, 47, p 1297-1305CrossRefGoogle Scholar
  19. 19.
    K.W. Schlichting, N.P. Padture, E.H. Jordan, and M. Gell, Failure Modes in Plasma-Sprayed Thermal Barrier Coatings, Mater. Sci. Eng. A, 2003, 342, p 120-130CrossRefGoogle Scholar
  20. 20.
    V. Teixeira, M. Andritschky, W. Fischer, H.P. Buchkremer, and D. Stöver, Analysis of Residual Stresses in Thermal Barrier Coatings, J. Mater. Proc. Technol., 1999, 92(93), p 209-216CrossRefGoogle Scholar
  21. 21.
    D. Liu, O. Lord, O. Stevens, and P.E.J. Flewitt, Calibration of Raman spectroscopy in the Stress Measurement of Air-Plasma-Sprayed Yttria-Stabilized Zirconia, Appl. Spectrosc., 2012, 66(10), p 1204-1209CrossRefGoogle Scholar
  22. 22.
    M. Tanaka, M. Hasegawa, A.F. Dericioglu, and Y. Kawawa, Measurement of Residual Stress in Air Plasma-Sprayed Y2O3-ZrO2 Thermal Barrier Coating System Using Micro-Raman Spectroscopy, Mater. Sci. Eng. A, 2006, 419, p 262-268CrossRefGoogle Scholar
  23. 23.
    M. Tanaka, R. Kitazawa, T. Tomimatsu, Y.F. Liu, and Y. Kagawa, Residual Stress Measurement of an EB-PVD Y2O3-ZrO2 Thermal Barrier Coating by Micro-Raman Spectroscopy, Surf. Coat. Technol., 2009, 204, p 657-660CrossRefGoogle Scholar
  24. 24.
    R.J. Christensen, D.M. Lipkin, D.R. Clarke, and K. Murphy, Nondestructive Evaluation of the Oxidation Stresses Through Thermal Barrier Coatings Using Cr3+ Piezospectroscopy, Appl. Phys. Lett., 1996, 69(24), p 3754-3756CrossRefGoogle Scholar
  25. 25.
    D. Liu, O. Lord, O. Stevens, and P.E.J. Flewitt, The Role of Beam Dispersion in Raman and Photo-Stimulated Luminescence Piezo-Spectroscopy of Yttria-Stabilized Zirconia in Multi-Layered Coatings, Acta Mater., 2013, 61, p 12-21CrossRefGoogle Scholar
  26. 26.
    D. Liu, C. Rinaldi, and P.E.J. Flewitt, Effect of Substrate Curvature on the Evolution of Microstructure and Residual Stresses in EB PVD-TBC, J. Eur. Ceram. Soc., 2015, 35, p 2563-2575CrossRefGoogle Scholar
  27. 27.
    B. Heeg, V.K. Tolpygo, and D.R. Clarke, Damage Evolution in Thermal Barrier Coatings with Thermal Cycling, J. Am. Ceram. Soc., 2011, 94, p 112-119CrossRefGoogle Scholar
  28. 28.
    K.W. Schlichting, K. Vaidyanathan, Y.H. Sohn, E.H. Jordan, M. Gell, and N.P. Padture, Application of Cr3+ Photoluminescence Piezo-Spectroscopy to Plasma-Sprayed Thermal Barrier Coatings for Residual Stress Measurement, Mater. Sci. Eng. A, 2000, 291, p 68-77CrossRefGoogle Scholar
  29. 29.
    C.R.C. Lima, S. Dosta, J.M. Guilemany, and D.R. Clarke, The Application of Photoluminescence Piezospectroscopy for Residual Stresses Measurement in Thermally Sprayed TBCs, Surf. Coat. Technol., 2017, 318, p 147-156CrossRefGoogle Scholar
  30. 30.
    X. Zhao and P. Xiao, Residual Stresses in Thermal Barrier Coatings Measured by Photoluminescence Piezospectroscopy and Indentation Technique, Surf. Coat. Technol., 2006, 201, p 1124-1131CrossRefGoogle Scholar
  31. 31.
    J. Voyer, F. Gitzhofer, and M.I. Boulos, Study of the Performance of TBC Under Thermal Cycling Conditions Using an Acoustic Emission Rig, J. Therm. Spray Technol., 1998, 7(2), p 181-190CrossRefGoogle Scholar
  32. 32.
    X.Y. Gong and D.R. Clarke, On the Measurement of Strain in Coatings Formed on a Wrinkled Elastic Substrate, Oxid. Met., 1998, 46, p 355-376CrossRefGoogle Scholar
  33. 33.
    V.K. Tolpygo and D.R. Clarke, Tensile Cracking During Thermal Cycling of Alumina Films Formed by High-Temperature Oxidation, Acta Mater., 1999, 47(13), p 3589-3605CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Jiasheng Yang
    • 1
  • Huayu Zhao
    • 1
  • Xinghua Zhong
    • 1
  • Jinxing Ni
    • 1
  • Yin Zhuang
    • 1
  • Liang Wang
    • 1
  • Shunyan Tao
    • 1
    Email author
  1. 1.Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiPeople’s Republic of China

Personalised recommendations