Advertisement

Journal of Thermal Spray Technology

, Volume 27, Issue 5, pp 870–879 | Cite as

High-Temperature Electrical Insulation Behavior of Alumina Films Prepared at Room Temperature by Aerosol Deposition and Influence of Annealing Process and Powder Impurities

  • Michael Schubert
  • Nico Leupold
  • Jörg Exner
  • Jaroslaw Kita
  • Ralf Moos
Peer Reviewed

Abstract

Alumina (Al2O3) is a widely used material for highly insulating films due to its very low electrical conductivity, even at high temperatures. Typically, alumina films have to be sintered far above 1200 °C, which precludes the coating of lower melting substrates. The aerosol deposition method (ADM), however, is a promising method to manufacture ceramic films at room temperature directly from the ceramic raw powder. In this work, alumina films were deposited by ADM on a three-electrode setup with guard ring and the electrical conductivity was measured between 400 and 900 °C by direct current measurements according to ASTM D257 or IEC 60093. The effects of film annealing and of zirconia impurities in the powder on the electrical conductivity were investigated. The conductivity values of the ADM films correlate well with literature data and can even be improved by annealing at 900 °C from 4.5 × 10−12 S/cm before annealing up to 5.6 × 10−13 S/cm after annealing (measured at 400 °C). The influence of zirconia impurities is very low as the conductivity is only slightly elevated. The ADM-processed films show a very good insulation behavior represented by an even lower electrical conductivity than conventional alumina substrates as they are commercially available for thick-film technology.

Keywords

aerosol deposition method (ADM) annealing guard ring impurities insulation behavior room-temperature impact consolidation (RTIC) vacuum kinetic spraying 

Notes

Acknowledgments

The authors are indebted to the following persons and organizations for supporting this work: The Bavarian research foundation (Bayerische Forschungsstiftung, BFS, grant AZ-1055-12) for funding. A. Mergner (Department for Functional Materials) and M. Heider (BIMF) for SEM sample preparation and characterization and the Department of Metals and Alloys, (Prof. Glatzel) for XRD analyses (all University of Bayreuth).

References

  1. 1.
    D. Galusek and K. Ghillanyova, Ceramics Science and Technology, Volume 2, Properties, Vol 2, Wiley-VCH, New York, 2010Google Scholar
  2. 2.
    A. Petzold and J. Ulbricht, Aluminiumoxid: Rohstoff - Werkstoff - Werkstoffkomponente; mit 38 Tabellen, 1st ed., Dt. Verl. für Grundstoffindustrie, 1991Google Scholar
  3. 3.
    J. Riegel, Exhaust Gas Sensors for Automotive Emission Control, Solid State Ionics, 2002, 152-153, p 783-800CrossRefGoogle Scholar
  4. 4.
    C.B. Carter and M.G. Norton, Ceramic Materials: Science and Engineering, Springer, Berlin, 2007Google Scholar
  5. 5.
    J. Akedo, Room Temperature Impact Consolidation (RTIC) of Fine Ceramic Powder by Aerosol Deposition Method and Applications to Microdevices, J. Therm. Spray Technol., 2008, 17(2), p 181-198CrossRefGoogle Scholar
  6. 6.
    D. Hanft, J. Exner, M. Schubert, T. Stöcker, P. Fuierer, and R. Moos, An Overview of the Aerosol Deposition Method: Process Fundamentals and New Trends in Materials Applications, J. Ceram. Sci. Technol., 2015, 6(3), p 147-182Google Scholar
  7. 7.
    A. Vardelle, C. Moreau, J. Akedo, H. Ashrafizadeh, C.C. Berndt, J.O. Berghaus, M. Boulos, J. Brogan, A.C. Bourtsalas, A. Dolatabadi, M. Dorfman, T.J. Eden, P. Fauchais, G. Fisher, F. Gaertner, M. Gindrat, R. Henne, M. Hyland, E. Irissou, E.H. Jordan, K.A. Khor, A. Killinger, Y.-C. Lau, C.-J. Li, L. Li, J. Longtin, N. Markocsan, P.J. Masset, J. Matejicek, G. Mauer, A. McDonald, J. Mostaghimi, S. Sampath, G. Schiller, K. Shinoda, M.F. Smith, A.A. Syed, N.J. Themelis, F.-L. Toma, J.P. Trelles, R. Vassen, and P. Vuoristo, The 2016 Thermal Spray Roadmap, J. Therm. Spray Technol., 2016, 2016, p 1-65Google Scholar
  8. 8.
    R. Fernandez and B. Jodoin, Cold Spray Aluminum–Alumina Cermet Coatings: Effect of Alumina Content, J. Therm. Spray Technol., 2018, 7(2), p 205Google Scholar
  9. 9.
    S.-M. Nam, N. Mori, H. Kakemoto, S. Wada, J. Akedo, and T. Tsurumi, Alumina Thick Films as Integral Substrates Using Aerosol Deposition Method, Jpn. J. Appl. Phys., 2004, 43(8A), p 5414-5418CrossRefGoogle Scholar
  10. 10.
    J. Akedo, Aerosol Deposition Method for Fabrication of Nano Crystal Ceramic Layer, Mater. Sci. Forum, 2004, 449-452, p 43-48CrossRefGoogle Scholar
  11. 11.
    M. Lebedev, J. Akedo, and T. Ito, Substrate Heating Effects on Hardness of an α-Al2O3 Thick Film Formed by Aerosol Deposition Method, J. Cryst. Growth, 2005, 275(1-2), p e1301-e1306CrossRefGoogle Scholar
  12. 12.
    M. Schubert, J. Exner, and R. Moos, Influence of Carrier Gas Composition on the Stress of Al2O3 Coatings Prepared by the Aerosol Deposition Method, Materials, 2014, 7(8), p 5633-5642CrossRefGoogle Scholar
  13. 13.
    J. Exner, M. Hahn, M. Schubert, D. Hanft, P. Fuierer, and R. Moos, Powder Requirements for Aerosol Deposition of Alumina Films, Adv. Powder Technol., 2015, 26, p 1143-1151CrossRefGoogle Scholar
  14. 14.
    M. Schubert, M. Hahn, J. Exner, J. Kita, and R. Moos, Effect of Substrate Hardness and Surface Roughness on the Film Formation of Aerosol-Deposited Ceramic Films, Funct. Mater. Lett., 2017, 10(4), p 1750045CrossRefGoogle Scholar
  15. 15.
    K. Naoe, M. Nishiki, and A. Yumoto, Relationship Between Impact Velocity of Al2O3 Particles and Deposition Efficiency in Aerosol Deposition Method, J. Therm. Spray Technol., 2013, 22(8), p 1267-1274CrossRefGoogle Scholar
  16. 16.
    J. Akedo and M. Lebedev, Microstructure and Electrical Properties of Lead Zirconate Titanate (Pb(Zr52/Ti48)O3) Thick Films Deposited by Aerosol Deposition Method, Jpn. J. Appl. Phys., 1999, 38(Part 1, No. 9B), p 5397-5401CrossRefGoogle Scholar
  17. 17.
    J. Akedo and M. Lebedev, Influence of Carrier Gas Conditions on Electrical and Optical Properties of Pb(Zr, Ti)O3 Thin Films Prepared by Aerosol Deposition Method, Jpn. J. Appl. Phys., 2001, 40(Part 1, No. 9B), p 5528-5532CrossRefGoogle Scholar
  18. 18.
    J. Akedo and M. Lebedev, Effects of Annealing and Poling Conditions on Piezoelectric Properties of Pb(Zr0.52, Ti0.48)O3 Thick Films formed by Aerosol Deposition Method, J. Cryst. Growth, 2002, 235(1-4), p 415-420CrossRefGoogle Scholar
  19. 19.
    D. Hanft, J. Exner, and R. Moos, Thick-Films of Garnet-Type Lithium Ion Conductor Prepared by the Aerosol Deposition Method: The Role of Morphology and Annealing Treatment on the Ionic Conductivity, J. Power Sources, 2017, 361, p 61-69CrossRefGoogle Scholar
  20. 20.
    I. Kim, J. Park, T.-H. Nam, K.-W. Kim, J.-H. Ahn, D.-S. Park, C.-W. Ahn, G. Wang, and H.-J. Ahn, Electrochemical Properties of an As-Deposited LiFePO4 Thin Film Electrode Prepared by Aerosol Deposition, J. Power Sources, 2013, 244, p 646-651CrossRefGoogle Scholar
  21. 21.
    S. Iwasaki, T. Hamanaka, T. Yamakawa, W.C. West, K. Yamamoto, M. Motoyama, T. Hirayama, and Y. Iriyama, Preparation of Thick-Film LiNi1/3Co1/3Mn1/3O2 Electrodes by Aerosol Deposition and Its Application to All-Solid-State Batteries, J. Power Sources, 2014, 272, p 1086-1090CrossRefGoogle Scholar
  22. 22.
    R. Inada, K. Shibukawa, C. Masada, Y. Nakanishi, and Y. Sakurai, Characterization of As-Deposited Li4Ti5O12 Thin Film Electrode Prepared by Aerosol Deposition Method, J. Power Sources, 2014, 253, p 181-186CrossRefGoogle Scholar
  23. 23.
    L.-S. Wang, C.-X. Li, G.-R. Li, G.-J. Yang, S.-L. Zhang, and C.-J. Li, Enhanced Sintering Behavior of LSGM Electrolyte and Its Performance for Solid Oxide Fuel Cells Deposited by Vacuum Cold Spray, J. Eur. Ceram. Soc., 2017, 37(15), p 4751-4761CrossRefGoogle Scholar
  24. 24.
    J.-J. Choi, C.-W. Ahn, J.-W. Kim, J. Ryu, B.-D. Hahn, W.-H. Yoon, and D.-S. Park, Anode-Supported Type SOFCs Based on Novel Low Temperature Ceramic Coating Process, J. Korean Ceram. Soc., 2015, 52(5), p 338-343CrossRefGoogle Scholar
  25. 25.
    H. Bae, J. Choi, and G.M. Choi, Electrical Conductivity of Gd-Doped Ceria Film Fabricated by Aerosol Deposition Method, Solid State Ionics, 2013, 236, p 16-21CrossRefGoogle Scholar
  26. 26.
    M. Bektas, D. Hanft, D. Schönauer-Kamin, T. Stöcker, G. Hagen, and R. Moos, Aerosol-Deposited BaFe0.7Ta0.3O3-δ for Nitrogen Monoxide and Temperature-Independent Oxygen Sensing, J. Sens. Sens. Syst., 2014, 3(2), p 223-229CrossRefGoogle Scholar
  27. 27.
    K. Sahner, M. Kaspar, and R. Moos, Assessment of the Novel Aerosol Deposition Method for Room Temperature Preparation of Metal Oxide Gas Sensor Films, Sens. Actuators B, 2009, 139(2), p 394-399CrossRefGoogle Scholar
  28. 28.
    T. Stöcker, J. Exner, M. Schubert, M. Streibl, and R. Moos, Influence of Oxygen Partial Pressure During Processing on the Thermoelectric Properties of Aerosol-Deposited CuFeO2, Materials, 2016, 9(4), p 227CrossRefGoogle Scholar
  29. 29.
    J.-J. Choi, J. Ryu, B.-D. Hahn, W.-H. Yoon, B.-K. Lee, J.-H. Choi, and D.-S. Park, Oxidation Behavior of Ferritic Steel Alloy Coated with LSM–YSZ Composite Ceramics by Aerosol Deposition, J. Alloys Compd., 2010, 492(1-2), p 488-495CrossRefGoogle Scholar
  30. 30.
    H. Kim, S. Yang, R.C. Pawar, S.-H. Ahn, and C.S. Lee, Role of TiO2 Nanoparticles in the Dry Deposition of NiO Micro-sized Particles at Room Temperature, Ceram. Int., 2015, 41(4), p 5937-5944CrossRefGoogle Scholar
  31. 31.
    J. Exner, M. Schubert, D. Hanft, T. Stöcker, P. Fuierer, and R. Moos, Tuning of the Electrical Conductivity of Sr(Ti, Fe)O3 Oxygen Sensing Films by Aerosol Co-deposition with Al2O3, Sens. Actuators B, 2016, 230, p 427-433CrossRefGoogle Scholar
  32. 32.
    J.-J. Choi, B.-D. Hahn, J. Ryu, W.-H. Yoon, B.-K. Lee, and D.-S. Park, Preparation and Characterization of Piezoelectric Ceramic–Polymer Composite Thick Films by Aerosol Deposition for Sensor Application, Sens. Actuators A, 2009, 153(1), p 89-95CrossRefGoogle Scholar
  33. 33.
    J.-H. Park, J. Akedo, and M. Nakada, Surface Plasmon Resonance in Novel Nanocomposite Gold/Lead Zirconate Titanate Films Prepared by Aerosol Deposition Method, Jpn. J. Appl. Phys., 2006, 45(9B), p 7512-7515CrossRefGoogle Scholar
  34. 34.
    B.B. Sinha, K.C. Chung, S.H. Jang, D.S. Park, and B.-D. Hahn, Fabrication of Magnesium Diboride Thin Films by Aerosol Deposition, Prog. Supercond., 2011, 13(2), p 122-126Google Scholar
  35. 35.
    H.-J. Kim and S.-M. Nam, Effects of Heat Treatment on the Dielectric Properties of Aerosol-Deposited Al2O3-Polyimide Composite Thick Films for Room-Temperature Fabrication, J. Ceram. Process. Res., 2009, 10(6), p 817-822Google Scholar
  36. 36.
    D.-W. Lee, H.-J. Kim, and S.-M. Nam, Effects of Starting Powder on the Growth of Al2O3 Films on Cu Substrates Using the Aerosol Deposition Method, J. Korean Phys. Soc., 2010, 57(41), p 1115-1121CrossRefGoogle Scholar
  37. 37.
    N. Leupold, M. Schubert, J. Kita, and R. Moos, Influence of High Temperature Annealing on the Dielectric Properties of Alumina Films Prepared by the Aerosol Deposition Method, Funct. Mater. Lett., 2018, 11(2), 1850022,  https://doi.org/10.1142/S1793604718500224 CrossRefGoogle Scholar
  38. 38.
    Y. Sato, Y. Uemichi, K. Nishikawa, and S. Yoshikado, Fabrication of Al2O3 Films Using Aerosol Deposition Method and Their Characterization, IOP Conf. Ser. Mater. Sci. Eng., 2011, 18(9), p 92056CrossRefGoogle Scholar
  39. 39.
    B.-D. Hahn, D.-S. Park, J.-J. Choi, W.-H. Yoon, J. Ryu, and D.-Y. Kim, Effects of Zr/Ti Ratio and Post-annealing Temperature on the Electrical Properties of Lead Zirconate Titanate (PZT) Thick Films Fabricated by Aerosol Deposition, J. Mater. Res., 2008, 23(01), p 226-235CrossRefGoogle Scholar
  40. 40.
    J.-G. Lee, Y.-H. Cha, D.-Y. Kim, J.-H. Lee, T.-K. Lee, W.-Y. Kim, J. Park, D. Lee, S.C. James, S.S. Al-Deyab, and S.S. Yoon, Robust Mechanical Properties of Electrically Insulative Alumina Films by Supersonic Aerosol Deposition, J. Therm. Spray Technol., 2015, 24(6), p 1046-1051CrossRefGoogle Scholar
  41. 41.
    A.K. Jonscher, Dielectric Relaxation in Solids, J. Phys. D Appl. Phys., 1999, 32(14), p R57-R70CrossRefGoogle Scholar
  42. 42.
    J. Öijerholm, J. Pan, and B. Jönsson, Influence of Grain-Size on Ionic Conductivity of Pure and Dense α-Al2O3 in the Temperature Range 400–1000 °C, Mater. Sci. Forum, 2004, 461-464, p 865-874CrossRefGoogle Scholar
  43. 43.
    O.T. Özkan and A.J. Moulson, The Electrical Conductivity of Single-Crystal and Polycrystalline Aluminium Oxide, J. Phys. D Appl. Phys., 1970, 3(6), p 983-987CrossRefGoogle Scholar
  44. 44.
    J. Kita, A. Engelbrecht, F. Schubert, A. Groß, F. Rettig, and R. Moos, Some Practical Points to Consider with Respect to Thermal Conductivity and Electrical Resistivity of Ceramic Substrates for High-Temperature Gas Sensors, Sens. Actuators B, 2015, 213, p 541-546CrossRefGoogle Scholar
  45. 45.
    F.G. Will, H.G. deLorenzi, and K.H. Janora, Conduction Mechanism of Single-Crystal Alumina, J. Am. Ceram. Soc., 1992, 75(2), p 295-304CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Department of Functional MaterialsUniversity of BayreuthBayreuthGermany

Personalised recommendations