Advertisement

Journal of Thermal Spray Technology

, Volume 26, Issue 8, pp 1838–1850 | Cite as

A Morphological Approach to the Modeling of the Cold Spray Process

  • F. Delloro
  • M. Jeandin
  • D. Jeulin
  • H. Proudhon
  • M. Faessel
  • L. Bianchi
  • E. Meillot
  • L. Helfen
Peer Reviewed
  • 202 Downloads

Abstract

A coating buildup model was developed, the aim of which was simulating the microstructure of a tantalum coating cold sprayed onto a copper substrate. To do so, first was operated a fine characterization of the irregular tantalum powder in 3D, using x-ray microtomography and developing specific image analysis algorithms. Particles were grouped by shape in seven classes. Afterward, 3D finite element simulations of the impact of the previously observed particles were realized. To finish, a coating buildup model was developed, based on the results of finite element simulations of particle impact. In its first version, this model is limited to 2D.

Keywords

cold spray modeling of coating formation process modeling splat morphology tomography 

List of Abbreviations

FE

Finite elements

SEM

Scanning electron microscopy

ESRF

European synchrotron radiation facility

XMT

X-ray microtomography

PAI

Principal axes of inertia

PCA

Principal component analysis

EOS

Equation of state

ALE

Arbitrary Lagrangian–Eulerian

Notes

Acknowledgments

The authors are grateful to CEA DAM and to the Institute Carnot-M.I.N.E.S. for the financial support of this study.

References

  1. 1.
    Champagne V.K. (editor), et al., The Cold Spray Material Deposition Process. Woodhead Publishing Limited, Cambridge, 2010.Google Scholar
  2. 2.
    A. Vardelle, C. Moreau, J. Akedo et al., The 2016 Thermal Spray Roadmap, J. Therm. Spray Technol., 2016, 25(8), p 1376. doi: 10.1007/s11666-016-0473-x CrossRefGoogle Scholar
  3. 3.
    H. Assadi, H. Kreye, F. Gartner, and T. Klassen, Cold Spraying—A Materials Perspective, Acta Mater., 2016, 116, p 382-407CrossRefGoogle Scholar
  4. 4.
    G. Benenati and R. Lupoi, Development of a Deposition Strategy in Cold Spray for Additive Manufacturing to Minimize Residual Stresses, Proc. CIRP, 2016, 55, p 101-108CrossRefGoogle Scholar
  5. 5.
    Y. Cormier, P. Dupuis, B. Jodoin, and A. Corbeil, Pyramidal Fin Arrays Performance Using Streamwise Anisotropic Materials by Cold Spray Additive Manufacturing, J. Therm. Spray Technol., 2016, 25(1-2), p 170-182CrossRefGoogle Scholar
  6. 6.
    X. Wang et al., Characterization and Modeling of the Bonding Process in Cold Spray Additive Manufacturing, Addit. Manuf., 2015, 8, p 149-162CrossRefGoogle Scholar
  7. 7.
    D. MacDonald, R. Fernández, F. Delloro et al., Cold Spraying of Armstrong Process Titanium Powder for Additive Manufacturing, J. Therm. Spray Technol., 2017, 26(4), p 598-609. doi: 10.1007/s11666-016-0489-2 CrossRefGoogle Scholar
  8. 8.
    C. Lee and J. Kim, Microstructure of Kinetic Spray Coatings: A Review, J. Therm. Spray Technol., 2015, 24(4), p 592-608CrossRefGoogle Scholar
  9. 9.
    G. Bae et al., General Aspects of Interface Bonding in Kinetic Sprayed Coatings, Acta Mater., 2008, 56, p 4858-4868CrossRefGoogle Scholar
  10. 10.
    M. Saleh, V. Luzin, and K. Spencer, Analysis of the Residual Stress and Bonding Mechanism in the Cold Spray Technique Using Experimental and Numerical Methods, Surf. Coat. Technol., 2014, 252, p 15-28CrossRefGoogle Scholar
  11. 11.
    A. Trinchi, Y.S. Yang, A. Tulloh et al., Copper Surface Coatings Formed by the Cold Spray Process: Simulations Based on Empirical and Phenomenological Data, J. Therm. Spray Technol., 2011, 20(5), p 986-991. doi: 10.1007/s11666-011-9613-5 CrossRefGoogle Scholar
  12. 12.
  13. 13.
    O. Amsellem, K. Madi, F. Borit et al., Two-Dimensional (2D) and Three-Dimensional (3d) Analyses of Plasma-Sprayed Alumina Microstructures for Finite-Element Simulation of Young’s Modulus, J. Mater. Sci., 2008, 43(12), p 4091-4098. doi: 10.1007/s10853-007-2239-9 CrossRefGoogle Scholar
  14. 14.
    S. Ahmadian, A. Browning, and E.H. Jordan, Three-Dimensional X-Ray Micro-Computed Tomography of Cracks in a Furnace Cycled Air Plasma Sprayed Thermal Barrier Coating, Scr. Mater., 2015, 97, p 13-16CrossRefGoogle Scholar
  15. 15.
    M. Jeandin, H. Koivuluoto, and S. Vezzu, Chap. 4 “Coating Properties”, Modern Cold Spray, 1st ed., J. Villafuerte, Ed., Springer, Berlin, 2015,Google Scholar
  16. 16.
    G. Rolland et al., Laser-Induced Damage in Cold-Sprayed Composite Coatings, Surf. Coat. Technol., 2011, 205, p 4915-4927CrossRefGoogle Scholar
  17. 17.
    O. Amsellem, F. Borit, D. Jeulin et al., Three-Dimensional Simulation of Porosity in Plasma-Sprayed Alumina Using Microtomography and Electrochemical Impedance Spectrometry for Finite Element Modeling of Properties, J. Therm. Spray Technol., 2012, 21(2), p 193. doi: 10.1007/s11666-011-9687-0 CrossRefGoogle Scholar
  18. 18.
    https://smil.cmm.mines-paristech.fr. Accessed 21 Dec 2016.
  19. 19.
    S. Beucher et al., The Watershed Transformation Applied to Image, 10th Pfefferkorn Conf. on Signal and Image Processing in Microscopy and Microanalysis, 16–19 sept. 1991, Cambridge, UK, Scanning Microscopy International, suppl. 6, 1992, p 299–314Google Scholar
  20. 20.
    Denis E. Parra, C. Barat, D. Jeulin, and C. Ducottet, 3D Complex Shape Characterization by Statistical Analysis: Application to Aluminium Alloys, Mater. Charact., 2008, 59, p 338-343CrossRefGoogle Scholar
  21. 21.
    L. Gillibert, C. Peyrega, D. Jeulin, V. Guipont, and M. Jeandin, 3D Multiscale Segmentation and Morphological Analysis of X-Ray Microtomography From Cold-Sprayed coatings, J. Microsc., 2012, 248(2), p 187-199CrossRefGoogle Scholar
  22. 22.
    I.T. Jolliffe, Principal Component Analysis, 2nd ed., Wiley, New York, 2002Google Scholar
  23. 23.
    B.S. Everitt, S. Landau, M. Leese, and D. Stahl, Cluster Analysis, 5th ed., Wiley, New York, 2011CrossRefGoogle Scholar
  24. 24.
    R. Ghelici, S. Bagherifard, M. Guagliano, and M. Verani, Numerical Simulation of Cold Spray Coating, Surf. Coat. Technol., 2011, 205, p 5294-5301CrossRefGoogle Scholar
  25. 25.
    W.Y. Li, C.J. Li, and H. Liao, in Modeling Aspects of High Velocity Impact of Particles in Cold Spraying by Explicit Finite Elements Analysis. Proceedings of the International Thermal Spray Conference, 2009, pp. 432-441Google Scholar
  26. 26.
    T. Antoun et al., Spall Fracture, Springer, New York, 2003Google Scholar
  27. 27.
    S.R. Chen and G.T. Gray, Constitutive Behaviour of Tantalum and Tantalum-Tungsten Alloys, Metall. Mater. Trans. A, 1996, 27(10), p 2994-3006CrossRefGoogle Scholar
  28. 28.
    S. Rahmati and A. Ghaei, The Use of Particle/Substrate Material Models in Simulation of Cold-Gasdynamic-Spray Process, J. Therm. Spray Technol., 2014, 23(3), p 530-540CrossRefGoogle Scholar
  29. 29.
    G.R. Johnson and W.H. Cook, in A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates, and High Temperatures. Proceedings of the 7th International Symposium on Ballistics, 1983, pp. 541-547Google Scholar
  30. 30.
    R. Clift, J.R. Grace, and M.E. Weber, Bubbles, Drops, and Particles, Academic Press, New York, 1978Google Scholar
  31. 31.
    ABAQUS Documentation, Dassault Systèmes, Providence, RI, USA, 2015.Google Scholar
  32. 32.
    B. Yildirim, S. Müftü, and A. Gouldstone, Modeling of High Velocity Impact of Spherical Particles, Wear, 2011, 270(9–10), p 703-713CrossRefGoogle Scholar
  33. 33.
    S. Yin, P. He, H. Liao, and X. Wang, Deposition Features of Ti Coating Using Irregular Powders in Cold Spray, J. Therm. Spray Technol., 2014, 23(6), p 984CrossRefGoogle Scholar
  34. 34.
    Q. Blochet et al, in Influence of Spray Angle on Cold Spray with Al for the Repair of Aircraft Components. Thermal Spray 2014: Proceedings of the International Thermal Spray Conference, Barcelona, Spain.Google Scholar
  35. 35.
    S. van der Walt, S.C. Colbert, and G. Varoquaux, The NumPy Array: A Structure for Efficient Numerical Computation, Comput. Sci. Eng., 2011, 13, p 22-30. doi: 10.1109/MCSE.2011.37 CrossRefGoogle Scholar
  36. 36.
    E. Jones, E. Oliphant, P. Peterson et al., SciPy: Open Source Scientific Tools for Python, 2001, http://www.scipy.org. Accessed 21 Dec 2016.
  37. 37.
    P.J. Ryan, Euclidean and Non-Euclidean Geometry, International Student Edition, Cambridge University Press, 2009.Google Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • F. Delloro
    • 1
  • M. Jeandin
    • 1
  • D. Jeulin
    • 2
  • H. Proudhon
    • 1
  • M. Faessel
    • 2
  • L. Bianchi
    • 3
  • E. Meillot
    • 4
  • L. Helfen
    • 5
  1. 1.Centre des Matériaux, Competence Centre for Spray Processing (C2P)MINES ParisTechParisFrance
  2. 2.Centre de Morphologie Mathématique, Mathématique et SystèmesMINES ParisTechParisFrance
  3. 3.Establissement SAFRAN PARIS-SACLAYChâteaufortFrance
  4. 4.CEA, LPThMontsFrance
  5. 5.ESRFGrenobleFrance

Personalised recommendations