Journal of Thermal Spray Technology

, Volume 26, Issue 6, pp 1161–1167 | Cite as

Effects of Purity and Phase Content of Feedstock Powder on Thermal Durability of Zirconia-Based Thermal Barrier Coatings

  • Kwang-Yong ParkEmail author
  • Yeon-Gil Jung
  • In-Soo Kim
  • Byung-Il Yang
Peer Reviewed


The thermal durability of thermal barrier coatings (TBCs) obtained using feedstock powders with different purity and phase content was investigated by cyclic thermal testing, including the effects on the sintering and phase transformation behaviors. Three kinds of 8 wt.% yttria-stabilized zirconia, namely regular purity (8YSZ), high purity (HP), and no monoclinic phase (nMP), were employed to prepare top coats by atmospheric plasma spraying on a NiCoCrAlY bond coat using a high-velocity oxy-fuel system. Use of 8YSZ, HP, and nMP for plasma spraying affected the microstructure and lifetime of the TBC in furnace cyclic testing (FCT) at 1100 °C and the sintering rate during annealing at 1400 °C for 50, 100, 200, and 400 h. In FCT, the TBC formed from nMP showed the longest durability, while that formed from HP showed lifetime performance similar to that obtained with regular-purity 8YSZ. The TBC obtained with nMP also exhibited the lowest monoclinic phase transition rate, followed by those obtained using HP and 8YSZ.


feedstock high purity monoclinic phase thermal barrier coating thermal conductivity thermal durability 



This work was supported by a Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean Government Ministry of Knowledge Economy (No. 2013101010170C).


  1. 1.
    L. Xie, M.R. Dorfman, A. Cipitria, S. Paul, I.O. Golosnoy, and T.W. Clyne, Properties and Performance of High-Purity Thermal Barrier Coatings, J. Therm. Spray Technol., 2007, 16(5-6), p 804-808CrossRefGoogle Scholar
  2. 2.
    B. Rajasekaran, G. Mauer, and R. Vassen, Enhanced Characteristics of HVOF-Sprayed MCrAlY Bond Coats for TBC Applications, J. Therm. Spray Technol., 2011, 20(6), p 1209-1216CrossRefGoogle Scholar
  3. 3.
    R. Vaßen, M.O. Jarligo, T. Steinke, D.E. Mack, and D. Stöver, Overview on Advanced Thermal Barrier Coatings, Surf. Coat. Technol., 2010, 205(4), p 938-942CrossRefGoogle Scholar
  4. 4.
    R. Vassen, A. Stuke, and D. Stöver, Recent Developments in the Field of Thermal Barrier Coatings, J. Therm. Spray Technol., 2009, 18(2), p 181-186CrossRefGoogle Scholar
  5. 5.
    T.S. Sidhu, S. Prakash, and R.D. Agrawal, Studies on the Properties of High-Velocity Oxy Fuel Thermal Spray Coatings for Higher Temperature Applications, Mater. Sci., 2009, 41(6), p 805-823CrossRefGoogle Scholar
  6. 6.
    A.N. Khan and J. Lu, Behavior of Air Plasma Sprayed Thermal Barrier Coatings, Subject to Intense Thermal Cycling, Surf. Coat. Technol., 2003, 166, p 37-43CrossRefGoogle Scholar
  7. 7.
    Schilke, P.W. Advanced Gas Turbine Materials and Coatings, Available from, Accessed 18 April 2011
  8. 8.
    N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296, p 280-284CrossRefGoogle Scholar
  9. 9.
    T. Bhatia, A. Ozturk, L. Xie, E. Jordan, B.M. Cetegen, M. Gell, X. Ma, and N. Padture, Mechanisms of Ceramic Coating Deposition in Solution-Precursor Plasma Spray, J. Mater. Res., 2002, 17(9), p 2363-2372CrossRefGoogle Scholar
  10. 10.
    L. Xie, X. Ma, E.H. Jordan, N.P. Padture, T.D. Xiao, and M. Gell, Identification of Coating Deposition Mechanisms in the Solution-Precursor Plasma-Spray Process using Model Spray Experiments, Mater. Sci. Eng. A, 2003, 362, p 204-212CrossRefGoogle Scholar
  11. 11.
    K.W. Schlichting, N.P. Padture, E.H. Jordan, and M. Gell, Failure Modes in Plasma-Sprayed Thermal Barrier Coatings, Mater. Sci. Eng. A, 2003, 342, p 120-130CrossRefGoogle Scholar
  12. 12.
    A. Rabiei and A.G. Evans, Failure Mechanisms Associated with the Thermally Grown Oxide in Plasma-Sprayed Thermal Barrier, Acta Mater., 2000, 48, p 3963-3976CrossRefGoogle Scholar
  13. 13.
    R.L. Jones, Metallurgical and Ceramic Coatings, K.H. Stern, Ed., Chapman & Hall, London, 1996, p 194 CrossRefGoogle Scholar
  14. 14.
    E.C. Subbarao, in Science and Technology of Zirconia, Advances in Ceramics, The American Ceramic Society, Columbus, OH, A. H. Heuer, L. W. Hobbs, Eds, 1884, 3 (1)Google Scholar
  15. 15.
    R. Jones, Thermal Barrier Coatings, Metallurgical and Ceramic Coatings, K.H. Stern, Ed., Chapman & Hall, 1996, 194Google Scholar
  16. 16.
    J.A. Thompson and T.W. Clyne, The Effect of Heat Treatment on the Stiffness of Zirconia Top Coats in Plasma-Sprayed TBCs, Acta Mater., 2001, 49, p 1565CrossRefGoogle Scholar
  17. 17.
    T.W. Clyne and S.C. Gill, Residual Stresses in Thermally Sprayed Coatings and their Effect on Interfacial Adhesion—A Review of Recent Work, J. Therm. Spray Technol., 1996, 5(1), p 401-418CrossRefGoogle Scholar
  18. 18.
    D. Stover and C. Funke, Directions of the Development of Thermal Barrier Coatings in Energy Applications, J. Mater. Process Technol., 1999, 93, p 195-202CrossRefGoogle Scholar
  19. 19.
    D.M. Zhu and R.A. Miller, Thermal Conductivity and Elastic Modulus Evolution of Thermal Barrier Coatings Under High Heat Flux Conditions, J. Therm. Spray Technol., 2000, 9, p 175-180CrossRefGoogle Scholar
  20. 20.
    S.A. Tsipas, I.O. Golosnoy, R. Damani, and T.W. Clyne, The Effect of a High Thermal Gradient on Sintering and Stiffening in the Top Coat of a Thermal Barrier Coating (TBC) System, J. Therm. Spray Technol., 2004, 13(3), p 370-376CrossRefGoogle Scholar
  21. 21.
    S.R. Choi, D.M. Zhu, and R.A. Miller, Effect of Sintering on Mechanical Properties of Plasma-Sprayed Zirconia-Based Thermal Barrier Coatings, J. Am. Ceram. Soc., 2005, 88(10), p 2859-2867CrossRefGoogle Scholar
  22. 22.
    F. Cernuschi, P. Bianchi, M. Leoni, and P. Scardi, Thermal Diffusivity/Microstructure Relationship in Y-PSZ Thermal Barrier Coatings, J. Therm. Spray Technol., 1999, 8(1), p 102-109CrossRefGoogle Scholar
  23. 23.
    R. Hamacha, P. Fauchais, and F. Nardou, Influence of Dopant on the Thermal Properties of Two Plasma-Sprayed Zirconia Coatings 1. Relationship Between Powder Characteristics and Coating Properties, J. Therm. Spray Technol., 1996, 5(4), p 431-438CrossRefGoogle Scholar
  24. 24.
    S. Stemmer, J. Vleugels, and O. Van Der Biest, Grain Boundary Segregation in High-Purity Yttria-Stabilized Tetragonal Zirconia Polycrystals (T-TZP), J. Eur. Ceram. Soc., 1998, 18, p 1565-1570CrossRefGoogle Scholar
  25. 25.
    J. Wang, H.P. Li, and R. Stevens, Hafnia and Hafnia-Toughened Ceramics, J. Mater. Sci., 1992, 27(20), p 5397-5430CrossRefGoogle Scholar
  26. 26.
    Y.tang, J.P. Longtin, S. Sampath, H. Wang, Effect of the Starting Microstructure on the Thermal Properties of As-Sprayed and Thermally Exposed Plasma-Sprayed YSZ Coatings, J. Am. Ceram. Soc., 2009, 92(3), p 710-716Google Scholar
  27. 27.
    Material Product Data Sheet, 8% Yttria Stabilized Zirconia Agglomerated and Sintered Thermal Spray Powders, Oerlikon Metco, 2014Google Scholar
  28. 28.
    V. Viswanathan, G. Dwivedi, and S. Sampath, Engineered Multilayer Thermal Barrier Coatings for Enhanced Durability and Functional Performance, J. Am. Ceram. Soc., 2014, 97(9), p 2770-2778CrossRefGoogle Scholar
  29. 29.
    C. Li, Y. Li, G. Yang, and C. Li, A Novel Plasma-Sprayed Durable Thermal Barrier Coating with a Well-Bonded YSZ Interlayer Between Porous YSZ and Bond Coat, J. Therm. Spray Technol., 2012, 21(3), p 383-390CrossRefGoogle Scholar
  30. 30.
    H.E. Eaton and R.C. Novak, Sintering Studies of Plasma Sprayed Zirconia, Surf. Coat. Technol., 1987, 32, p 227-236CrossRefGoogle Scholar
  31. 31.
    J.A. Thompson and T.W. Clyne, The Effect of Heat Treatment on the Stiffness of Zirconia Top Coats in Plasma-Sprayed TBCs, Acta Mater., 2001, 49(9), p 1565-1575CrossRefGoogle Scholar
  32. 32.
    A. Cipitria, I.O. Golosnoy, and T.W. Clyne, A Sintering Model for Plasma-Sprayed Zirconia TBCs, Part I: Free-Standing Coatings, Acta Mater., 2009, 57, p 980-992CrossRefGoogle Scholar
  33. 33.
    A.F. Renteria and B. Saruhan, Effect of Ageing on Microstructure Changes in EB-PVD Manufactured Standard PYSZ Top Coat of Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2006, 26, p 2249-2255CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • Kwang-Yong Park
    • 1
    Email author
  • Yeon-Gil Jung
    • 2
  • In-Soo Kim
    • 1
  • Byung-Il Yang
    • 1
  1. 1.Doosan Heavy Industries and ConstructionChangwonRepublic of Korea
  2. 2.School of Materials Science and EngineeringChangwon National UniversityChangwonRepublic of Korea

Personalised recommendations