Journal of Thermal Spray Technology

, Volume 26, Issue 3, pp 417–431 | Cite as

Dual-Layer Oxidation-Protective Plasma-Sprayed SiC-ZrB2/Al2O3-Carbon Nanotube Coating on Graphite

  • S. Ariharan
  • Pradyut Sengupta
  • Ambreen Nisar
  • Ankur Agnihotri
  • N. Balaji
  • S. T. Aruna
  • Kantesh Balani
Peer Reviewed

Abstract

Graphite is used in high-temperature gas-cooled reactors because of its outstanding irradiation performance and corrosion resistance. To restrict its high-temperature (>873 K) oxidation, atmospheric-plasma-sprayed SiC-ZrB2-Al2O3-carbon nanotube (CNT) dual-layer coating was deposited on graphite substrate in this work. The effect of each layer was isolated by processing each component of the coating via spark plasma sintering followed by isothermal kinetic studies. Based on isothermal analysis and the presence of high residual thermal stress in the oxide scale, degradation appeared to be more severe in composites reinforced with CNTs. To avoid the complexity of analysis of composites, the high-temperature activation energy for oxidation was calculated for the single-phase materials only, yielding values of 11.8, 20.5, 43.5, and 4.5 kJ/mol for graphite, SiC, ZrB2, and CNT, respectively, with increased thermal stability for ZrB2 and SiC. These results were then used to evaluate the oxidation rate for the composites analytically. This study has broad implications for wider use of dual-layer (SiC-ZrB2/Al2O3) coatings for protecting graphite crucibles even at temperatures above 1073 K.

Keywords

oxidation plasma spraying SiC sintering ZrB2 

References

  1. 1.
    I.B. Mason and R.H. Knibbs, The Young’s Modulus of Carbon and Graphite Artefacts, Carbon, 1967, 5(5), p 493-506CrossRefGoogle Scholar
  2. 2.
    C. Yanhui, L. Hejun, F. Qiangang, S. Xiaohong, Q. Lehua, and W. Bingbo, Oxidation Protective and Mechanical Properties of SiC Nanowire-Toughened Si-Mo-Cr Composite Coating for C/C Composites, Corros. Sci., 2012, 58, p 315-320CrossRefGoogle Scholar
  3. 3.
    N.S. Jacobson and D.M. Curry, Oxidation Microstructure Studies of Reinforced Carbon/Carbon Composite, Carbon, 2006, 44(7), p 1142-1150CrossRefGoogle Scholar
  4. 4.
    Y.H. Chu, Q.G. Fu, C.W. Cao, H.J. Li, K.Z. Li, and Q. Lei, Microstructure and Oxidation Resistant Property of C/C Composites Modified by SiC-MoSi2-CrSi2, Surf. Eng., 2011, 27(5), p 355-361CrossRefGoogle Scholar
  5. 5.
    Q.G. Fu, H.J. Li, Y.J. Wang, K.Z. Li, and X.H. Shi, B2O3 Modified SiC-MoSi2 Oxidation Resistant Coating for Carbon/Carbon Composites by a Two-Step Pack Cementation, Corros. Sci., 2009, 51(10), p 2450-2454CrossRefGoogle Scholar
  6. 6.
    N.S. Jacobson, T.A. Leonhardt, D.M. Curry, and R.A. Rapp, Oxidative Attack of Carbon/Carbon Substrates Through Coating Pinholes, Carbon, 1999, 37, p 411-419CrossRefGoogle Scholar
  7. 7.
    K. Fujii, J. Nakano, and M. Shindo, Improvement of the Oxidation Resistance of a Graphite Material by Compositionally Gradient SiC/C Layer, J. Nucl. Mater., 1993, 203(1), p 10-16CrossRefGoogle Scholar
  8. 8.
    F.J. Buchanan and J.A. Little, Oxidation Protection of Carbon-Carbon Composites Using Chemical Vapour Deposition and Glaze Technology, Corros. Sci., 1993, 35(5-8), p 1243-1250CrossRefGoogle Scholar
  9. 9.
    H.T. Tsou and W. Kowbel, A Hybrid PACVD SiC/CVD Si3N4/SiC Multilayer Coating for Oxidation Protection of Composites, Carbon, 1995, 33(9), p 1279-1288CrossRefGoogle Scholar
  10. 10.
    J.N. Ness and T.F. Page, The Structure and Properties of Interfaces in Reaction-Bonded Silicon Carbides, Tailoring Multiph. Composite Ceram., 1986, p 347-356Google Scholar
  11. 11.
    S. Zhu, W.G. Fahrenholtz, G.E. Hilmas, and S.C. Zhang, Pressure Less Sintering of Carbon-Coated Zirconium Diboride Powders, Mater. Sci. Eng. A, 2007, 459(1-2), p 167-171CrossRefGoogle Scholar
  12. 12.
    T. Feng, H.J. Li, X.H. Shi, X. Yang, and S.L. Wang, Oxidation and Ablation Resistance of ZrB2-SiC-Si/B-Modified SiC Coating for Carbon/Carbon Composites, Corros. Sci., 2013, 67, p 292-297CrossRefGoogle Scholar
  13. 13.
    K. Balani, S.R. Bakshi, Y. Chen, T. Laha, and A. Agarwal, Role of Powder Treatment and Carbon Nanotube Dispersion in the Fracture Toughening of Plasma Sprayed Aluminum Oxide Carbon Nanotube Nanocomposite, J. Nanosci. Nanotechnol., 2007, 7, p 3553-3562CrossRefGoogle Scholar
  14. 14.
    C.H. Chen and H. Awaji, Temperature Dependence of Mechanical Properties of Aluminum Titanate Ceramics, J. Eur. Ceram. Soc., 2007, 27(1), p 13-18CrossRefGoogle Scholar
  15. 15.
    S. Ariharan, A. Gupta, A. Keshri, A. Agarwal, and K. Balani, Size Effect of Yttria Stabilized Zirconia Addition on Fracture Toughness and Thermal Conductivity of Plasma Sprayed Aluminum Oxide Composite Coatings, Nanosci. Nanotechnol. Lett., 2012, 4(3), p 323-332CrossRefGoogle Scholar
  16. 16.
    K. Balani, A. Agarwal, and T. McKechnie, Near Net Shape Fabrication Via Vacuum Plasma Spray Forming, Trans. Indian Inst. Met., 2006, 2(59), p 237-244Google Scholar
  17. 17.
    M. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, and R.S. Ruoff, Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, Science, 2000, 287, p 637-640CrossRefGoogle Scholar
  18. 18.
    K. Balani, S. Bakshi, D. Lahiri, and A. Agarwal, Grain Growth Behavior of Aluminum Oxide Reinforced with Carbon Nanotube During Plasma Spraying and Post-Spray Consolidation, Int. J. Appl. Ceram. Technol., 2010, 7(6), p 846-855CrossRefGoogle Scholar
  19. 19.
    Y. Chen, K. Balani, and A. Agarwal, Analytical Model to Evaluate Interface Characteristics of Carbon Nanotube Reinforced Aluminum Oxide Nanocomposites, Appl. Phys. Lett., 2008, 92(1), p 011916CrossRefGoogle Scholar
  20. 20.
    J. Sun, L. Gao, and X. Jin, Reinforcement of Alumina Matrix with Multi-Walled Carbon Nanotubes, Ceram. Int., 2005, 31(6), p 893-896CrossRefGoogle Scholar
  21. 21.
    J.Y. Huang, S. Chen, Z.Q. Wang, K. Kempa, Y.M. Wang, S.H. Jo, G. Chen, M.S. Dresselhaus, and Z.F. Ren, Superplastic Carbon Nanotubes, Nature, 2006, 439, p 281CrossRefGoogle Scholar
  22. 22.
    F. Lupo, R. Kamalakaran, C. Scheu, N. Grobert, and M. Rühle, Microstructural Investigations on Zirconium Oxide-Carbon Nanotube Composites Synthesized by Hydrothermal Crystallization, Carbon, 2004, 42(10), p 1995-1999CrossRefGoogle Scholar
  23. 23.
    W.-B. Tian, Y.-M. Kan, G.-J. Zhang, and P.-L. Wang, Effect of Carbon Nanotubes on the Properties of ZrB2-SiC Ceramics, Mater. Sci. Eng. A, 2008, 487(1-2), p 568-573CrossRefGoogle Scholar
  24. 24.
    G.B. Yadhukulakrishnan, A. Rahman, S. Karumuri, M.M. Stackpoole, A.K. Kalkan, R.P. Singh, and S.P. Harimkar, Spark Plasma Sintering of Silicon Carbide and Multi-walled Carbon Nanotube Reinforced Zirconium Diboride Ceramic Composite, Mater. Sci. Eng. A, 2012, 552, p 125-133CrossRefGoogle Scholar
  25. 25.
    S.R. Bakshi, K. Balani, and A. Agarwal, Thermal Conductivity of Plasma Sprayed Aluminum Oxide Multiwalled Carbon Nanotube Composites, J. Am. Ceram. Soc., 2008, 91(3), p 942-947CrossRefGoogle Scholar
  26. 26.
    A. Nisar, S. Ariharan, and K. Balani, Synergistic Reinforcement of Carbon Nanotubes and Silicon Carbide for Toughening Tantalum Carbide Based Ultrahigh Temperature Ceramic, J. Mater. Res., 2016, 31(6), p 682-692CrossRefGoogle Scholar
  27. 27.
    M. Asmani, C. Kermel, A. Leriche, and M. Ourak, Influence of Porosity on Young’s Modulus and Poisson’s Ratio in Alumina Ceramics, J. Eur. Ceram. Soc., 2001, 21(8), p 1081-1086CrossRefGoogle Scholar
  28. 28.
    S. Zhu, W.G. Fahrenholtz, G.E. Hilmas, and S.C. Zhang, Pressureless Sintering of Carbon-Coated Zirconium Diboride Powders, Mater. Sci. Eng. A, 2007, 459(1), p 167-171CrossRefGoogle Scholar
  29. 29.
    N.L. Okamoto, M. Kusakari, K. Tanaka, H. Inui, M. Yamaguchi, and S. Otani, Temperature Dependence of Thermal Expansion and Elastic Constants of Single Crystals of ZrB2 and the Suitability of ZrB2 as a Substrate for GaN Film, J. Appl. Phys., 2003, 93(1), p 88-93CrossRefGoogle Scholar
  30. 30.
    A. Huntz, L. Maréchal, B. Lesage, and R. Molins, Thermal Expansion Coefficient of Alumina Films Developed by Oxidation of a FeCrAl Alloy Determined by a Deflection Technique, Appl. Surf. Sci., 2006, 252(22), p 7781-7787CrossRefGoogle Scholar
  31. 31.
    A. Nisar, S. Ariharan, T. Venkateswaran, N. Sreenivas, and K. Balani, Oxidation Studies on TaC Based Ultra-High Temperature Ceramic Composites Under Plasma Arc Jet Exposure, Corros. Sci., 2016Google Scholar
  32. 32.
    L. Xiaowei, R.J. Charles, and Y. Suyuan, Effect of Temperature on Graphite Oxidation Behaviour, Nucl. Eng. Des., 2004, 227(3), p 273-280CrossRefGoogle Scholar
  33. 33.
    J. Gallego, C. Batiot-Dupeyat, and F. Mondragón, Activation Energies and Structural Changes in Carbon Nanotubes During Different Acid Treatments, J. Therm. Anal. Calorim., 2013, 114(2), p 597-602 (in English)CrossRefGoogle Scholar
  34. 34.
    J. Li, P. Eveno, and A.M. Huntz, Oxidation of SiC, Mater. Corros., 1990, 41(12), p 716-725CrossRefGoogle Scholar
  35. 35.
    A.K. Kuriakose and J.L. Margrave, The Oxidation Kinetics of Zirconium Diboride and Zirconium Carbide at High Temperatures, J. Electrochem. Soc., 1964, 111(7), p 827-831CrossRefGoogle Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  • S. Ariharan
    • 1
  • Pradyut Sengupta
    • 1
  • Ambreen Nisar
    • 1
  • Ankur Agnihotri
    • 2
  • N. Balaji
    • 3
  • S. T. Aruna
    • 3
  • Kantesh Balani
    • 1
  1. 1.High Temperature Fuel Cell Laboratory, Department of Materials Science and EngineeringIndian Institute of Technology KanpurKanpurIndia
  2. 2.Department of Materials Science and Metallurgical EngineeringChhatrapati Shahu Ji Maharaj UniversityKanpurIndia
  3. 3.Surface Engineering DivisionCSIR-National Aerospace LaboratoryBangaloreIndia

Personalised recommendations