Journal of Thermal Spray Technology

, Volume 26, Issue 1–2, pp 37–46 | Cite as

Suspensions Plasma Spraying of Ceramics with Hybrid Water-Stabilized Plasma Technology

  • Radek Musalek
  • Jan Medricky
  • Tomas Tesar
  • Jiri Kotlan
  • Zdenek Pala
  • Frantisek Lukac
  • Tomas Chraska
  • Nicholas Curry
Peer Reviewed


Technology of water-stabilized plasma torch was recently substantially updated through introduction of a so-called hybrid concept that combines benefits of water stabilization and gas stabilization principles. The high-enthalpy plasma provided by the WSP-H (“hybrid”) torch may be used for thermal spraying of powders as well as liquid feedstocks with high feed rates. In this study, results from three selected experiments with suspension plasma spraying with WSP-H technology are presented. Possibility of deposition of coatings with controlled microstructures was demonstrated for three different ceramics (YSZ—yttria-stabilized zirconia, YAG—yttrium aluminum garnet and Al2O3) introduced into ethanol-based suspensions. Shadowgraphy was used for optimization of suspension injection and visualization of the liquid fragmentation in the plasma jet. Coatings were deposited onto substrates attached to the rotating carousel with integrated temperature monitoring and air cooling, which provided an excellent reproducibility of the deposition process. Deposition of columnar-like YSZ and dense YAG and Al2O3 coatings was successfully achieved. Deposition efficiency reached more than 50%, as evaluated according to EN ISO 17 836 standard.


alumina ceramics dense hybrid plasma torch suspension plasma spraying water-stabilized plasma yttria-stabilized zirconia (YSZ) 



Financial support provided by Czech Science Foundation through Grant No. GA15-12145S (Physical aspects of plasma spray deposition from liquid feedstock) is gratefully acknowledged.


  1. 1.
    A. Killinger, R. Gadow, G. Mauer, A. Guignard, R. Vassen, and D. Stover, Review of New Developments in Suspension and Solution Precursor Thermal Spray Processes, J. Therm. Spray Technol., 2011, 20(4), p 677-695CrossRefGoogle Scholar
  2. 2.
    K. VanEvery, M.J.M. Krane, R.W. Trice, H. Wang, W. Porter, M. Besser, D. Sordelet, J. Ilavsky, and J. Almer, Column Formation in Suspension Plasma-Sprayed Coatings and Resultant Thermal Properties, J. Therm. Spray Technol., 2011, 20(4), p 817-828CrossRefGoogle Scholar
  3. 3.
    L. Pawlowski, Suspension and Solution Thermal Spray Coatings, Surf. Coat. Technol., 2009, 203(19), p 2807-2829CrossRefGoogle Scholar
  4. 4.
    R. Vassen, H. Kaner, G. Mauer, and D. Stover, Suspension Plasma Spraying: Process Characteristics and Applications, J. Therm. Spray Technol., 2010, 19(1-2), p 219-225CrossRefGoogle Scholar
  5. 5.
    P. Fauchais and G. Montavon, Latest Developments in Suspension and Liquid Precursor Thermal Spraying, J. Therm. Spray Technol., 2010, 19(1-2), p 226-239CrossRefGoogle Scholar
  6. 6.
    P. Fauchais, M. Vardelle, S. Goutier, and A. Vardelle, Key Challenges and Opportunities in Suspension and Solution Plasma Spraying, Plasma Chem. Plasma Process., 2014, 35(3), p 511-525CrossRefGoogle Scholar
  7. 7.
    P. Fauchais, M. Vardelle, A. Vardelle, and S. Goutier, What Do We Know, What Are the Current Limitations of Suspension Plasma Spraying? J. Therm. Spray Technol., 2015, 24(7), p 1120-1129CrossRefGoogle Scholar
  8. 8.
    F.-L. Toma, A. Potthoff, L.-M. Berger, and C. Leyens, Demands, Potentials, and Economic Aspects of Thermal Spraying with Suspensions: A Critical Review, J. Therm. Spray Technol., 2015, 24(7), p 1143-1152CrossRefGoogle Scholar
  9. 9.
    N. Curry, K. VanEvery, T. Snyder, J. Susnjar, and S. Bjorklund, Performance Testing of Suspension Plasma Sprayed Thermal Barrier Coatings Produced with Varied Suspension Parameters, Coatings, 2015, 5(3), p 338-356CrossRefGoogle Scholar
  10. 10.
    A. Ganvir, N. Curry, S. Bjorklund, N. Markocsan, and P. Nylen, Characterization of Microstructure and Thermal Properties of YSZ Coatings Obtained by Axial Suspension Plasma Spraying (ASPS), J. Therm. Spray Technol., 2015, 24(7), p 1195-1204CrossRefGoogle Scholar
  11. 11.
    R. Musalek, G. Bertolissi, J. Medricky, J. Kotlan, Z. Pala, and N. Curry, Feasibility of Suspension Spraying of Yttria-Stabilized Zirconia with Water-Stabilized Plasma Torch, Surf. Coat. Technol., 2015, 268, p 58-62CrossRefGoogle Scholar
  12. 12.
    J. Matejicek, T. Kavka, G. Bertolissi, P. Ctibor, M. Vilemová, R. Musalek, and B. Nevrla, The Role of Spraying Parameters and Inert Gas Shrouding in Hybrid Water-Argon Plasma Spraying of Tungsten and Copper for Nuclear Fusion Applications, J. Therm. Spray Technol., 2013, 22(5), p 744-755CrossRefGoogle Scholar
  13. 13.
    M. Hrabovsky, Thermal Plasma Generators with Water Stabilized Arc, Open Plasma Phys. J., 2009, 2(1), p 99-104CrossRefGoogle Scholar
  14. 14.
    M. Hlina and M. Hrabovsky, Enthalpy Probe Diagnostics of Steam/Argon Plasma Jet, Plasma Phys. Technol., 2015, 2(2), p 142-145Google Scholar
  15. 15.
    M. Hrabovsky, Generation of Thermal Plasmas in Liquid-Stabilized and Hybrid Dc-Arc Torches, Pure Appl. Chem., 2002, 74(3), p 429-433CrossRefGoogle Scholar
  16. 16.
    T. Kavka, J. Matejicek, P. Ctibor, A. Maslani, and M. Hrabovsky, Plasma Spraying of Copper by Hybrid Water-Gas DC Arc Plasma Torch, J. Therm. Spray Technol., 2011, 20(4), p 760-774CrossRefGoogle Scholar
  17. 17.
    T. Kavka, J. Matejicek, P. Ctibor, and M. Hrabovsky, Spraying of Metallic Powders by Hybrid Gas/Water Torch and the Effects of Inert Gas Shrouding, J. Therm. Spray Technol., 2011, 21(3-4), p 695-705CrossRefGoogle Scholar
  18. 18.
    T. Kavka, V. Kopecky, V. Sember, A. Maslani, and O. Chumak, Analysis of Plasma Jets Generated in Gas and Gas-Water Torches, High Temp. Mater. Process., 2007, 11(1), p 59-70CrossRefGoogle Scholar
  19. 19.
    J. Jenista, H. Takana, H. Nishiyama, M. Bartlova, V. Aubrecht, P. Krenek, M. Hrabovsky, T. Kavka, V. Sember, and A. Maslani, Integrated Parametric Study of a Hybrid-Stabilized Argon-water Arc under Subsonic, Transonic and Supersonic Plasma Flow Regimes, J. Phys. D Appl. Phys., 2011, 44(43), p 435204CrossRefGoogle Scholar
  20. 20.
    J. Kotlan, Z. Pala, R. Musalek, and P. Ctibor, On Reactive Suspension Plasma Spraying of Calcium Titanate, Ceram. Int., 2016, 42(3), p 4607-4615CrossRefGoogle Scholar
  21. 21.
    L. Latka, S.B. Goryachev, S. Kozerski, and L. Pawlowski, Sintering of Fine Particles in Suspension Plasma Sprayed Coatings, Materials (Basel), 2010, 3(7), p 3845-3866CrossRefGoogle Scholar
  22. 22.
    C.M. Weyant and K.T. Faber, Processing-Microstructure Relationships for Plasma-Sprayed Yttrium Aluminum Garnet, Surf. Coat. Technol., 2008, 202(24), p 6081-6089CrossRefGoogle Scholar
  23. 23.
    S. Kuroda and T.W. Clyne, The Quenching Stress in Thermally Sprayed Coatings, Thin Solid Films, 1991, 200(1), p 49-66CrossRefGoogle Scholar
  24. 24.
    R. Musalek, J. Matejicek, M. Vilemova, and O. Kovarik, Non-Linear Mechanical Behavior of Plasma Sprayed Alumina under Mechanical and Thermal Loading, J. Therm. Spray Technol., 2010, 19(1-2), p 422-428CrossRefGoogle Scholar
  25. 25.
    P. Ctibor, J. Kubat, Z. Pala, and B. Nevrla, Plasma Spraying of Cerium-Doped YAG, J. Mater. Res., 2014, 29(19), p 2344-2351CrossRefGoogle Scholar
  26. 26.
    B.G. Ravi, A.S. Gandhi, X.Z. Guo, J. Margolies, and S. Sampath, Liquid Precursor Plasma Spraying of Functional Materials: A Case Study for Yttrium Aluminum Garnet (YAG), J. Therm. Spray Technol., 2008, 17(1), p 82-90CrossRefGoogle Scholar
  27. 27.
    P. Chraska, J. Dubsky, K. Neufuss, and J. Pisacka, Alumina-Base Plasma-Sprayed Materials Part I: Phase Stability of Alumina and Alumina-Chromia, J. Therm. Spray Technol., 1997, 6(3), p 320-326CrossRefGoogle Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  • Radek Musalek
    • 1
  • Jan Medricky
    • 1
  • Tomas Tesar
    • 2
  • Jiri Kotlan
    • 1
  • Zdenek Pala
    • 1
  • Frantisek Lukac
    • 1
  • Tomas Chraska
    • 1
  • Nicholas Curry
    • 3
  1. 1.Department of Materials EngineeringInstitute of Plasma Physics CAS, v.v.i.Prague 8Czech Republic
  2. 2.Department of Materials, Faculty of Nuclear Sciences and Physical EngineeringCzech Technical University in PraguePrague 2Czech Republic
  3. 3.Treibacher Industrie AGAlthofenAustria

Personalised recommendations