Journal of Thermal Spray Technology

, Volume 25, Issue 1–2, pp 28–35 | Cite as

Development of Processing Windows for HVOF Carbide-Based Coatings

  • Andrew Siao Ming AngEmail author
  • Hugo Howse
  • Scott A. Wade
  • Christopher C. Berndt
Peer Reviewed


Optimized processing windows for spraying high-quality metal carbide-based coatings are developed using particle diagnostic technology. The cermet coatings were produced via the high-velocity oxygen fuel (HVOF) spray process and are proposed for service applications such as marine hydraulics. The traditional “trial and error” method for developing coating process parameters is not technically robust, as well as being costly and time consuming. Instead, this contribution investigated the use of real-time monitoring of parameters associated with the HVOF flame jets and particles using in-flight particle diagnostics. Subsequently, coatings can be produced with knowledge concerning the molten particle size, temperature, and velocity profile. The analytical results allow identification of optimized coating process windows, which translate to coatings of lower porosity and improved mechanical performance.


carbide cermet coatings diagnostic techniques hardness HVOF nickel-based porosity thermal spray coatings 



The authors thank messieurs Maurice Valimberti and Peter Hawkey from United Surface Technologies; Peter Richings and Craig Boschen from MacTaggart Scott Australia; and Andrew Moore from Swinburne University for expert assistance in the preparation and procurement of samples used in this work. The authors acknowledge the support of the Defence Materials Technology Centre, which was established and is supported by the Australian Government’s Defence Future Capability Technology Centre (DFCTC) initiative. This work was performed in part at the Biointerface Engineering Hub in the Victorian Node of the Australian National Fabrication Facility (ANFF).


  1. 1.
    K.O. Legg and J.P. Sauer, Use of Thermal Spray as an Aerospace Chrome Plating Alternative. Final Report, Grant No. N00173-98-D-2006, D.O. 0002, 2000.Google Scholar
  2. 2.
    L.M. Berger, Application of Hardmetals as Thermal Spray Coatings, Int. J. Refract Metal Hard Mater., 2015, 49(1), p 350-364CrossRefGoogle Scholar
  3. 3.
    J.A. Picas, M. Punset, M. Teresa Baile, E. Martín, and A. Forn, Tribological Evaluation of HVOF Thermal-Spray Coatings as a Hard Chrome Replacement, Surf. Interface Anal., 2011, 43(10), p 1346-1353CrossRefGoogle Scholar
  4. 4.
    G. Bolelli, V. Cannillo, L. Lusvarghi, and S. Riccò, Mechanical and Tribological Properties of Electrolytic Hard Chrome and HVOF-Sprayed Coatings, Surf. Coat. Technol., 2006, 200(9), p 2995-3009CrossRefGoogle Scholar
  5. 5.
    B.D. Sartwell, K.O. Legg, J. Zimmermann, M. Reynolds, J. Gribble, J. Magno, R. Mason, and A. Kaltenhauser, Validation of HVOF Thermal Spray Coatings as a Replacement for Hard Chrome Plating on Hydraulic/Pneumatic Actuators. US Department of Defense Environmental Security Technology Certification Program (ESTCP) Final Report, 2006Google Scholar
  6. 6.
    V.A. de Souza and A. Neville, Corrosion and Erosion Damage Mechanisms During Erosion—Corrosion of WC-Co-Cr Cermet Coatings, Wear, 2003, 255(1-6), p 146-156CrossRefGoogle Scholar
  7. 7.
    L. Fedrizzi, S. Rossi, R. Cristel, and P.L. Bonora, Corrosion and Wear Behaviour of HVOF Cermet Coatings Used to Replace Hard Chromium, Electrochim. Acta, 2004, 49(17-18), p 2803-2814CrossRefGoogle Scholar
  8. 8.
    S. Zimmermann, Chromium Carbide Coatings Produced with Various HVOF Spray Systems, Proceedings of the 9th National Thermal Spray Conference, C.C. Berndt, Ed., October 7-11, 1996 (Cincinnati, Ohio), ASM International, 1996, p 147-152Google Scholar
  9. 9.
    D. Zhang, S.J. Harris, and D.G. McCartney, Microstructure Formation and Corrosion Behaviour in HVOF-Sprayed Inconel 625 Coatings, Mater. Sci. Eng., A, 2003, 344(1-2), p 45-56CrossRefGoogle Scholar
  10. 10.
    G. Bolelli, L.M. Berger, T. Börner, H. Koivuluoto, L. Lusvarghi, C. Lyphout, N. Markocsan, V. Matikainen, P. Nylén, P. Sassatelli, R. Trache, and P. Vuoristo, Tribology of HVOF- and HVAF-Sprayed WC-10Co4Cr Hardmetal Coatings: A Comparative Assessment, Surf. Coat. Technol., 2015, 265, p 125-144CrossRefGoogle Scholar
  11. 11.
    C. Moreau, P. Gougeon, M. Lamontagne, V. Lacasse, G. Vaudreuil, and P. Cielo, On-line Control of the Plasma Spray Process by Monitoring the Temperature, Velocity and Trajectory of In-flight Particles, National Thermal Spray Conference—Thermal spray industrial applications, C.C. Berndt and S. Sampath, Ed., (Boston, Massachusetts, USA), ASM International, 1994, p 431-437Google Scholar
  12. 12.
    J.G. Legoux, B. Arsenault, L. Leblanc, V. Bouyer, and C. Moreau, Evaluation of Four High Velocity Thermal Spray Guns Using WC-10% Co-4% Cr Cermets, J. Therm. Spray Technol., 2002, 11(1), p 86-94CrossRefGoogle Scholar
  13. 13.
    M. Oksa, E. Turunen, T. Suhonen, T. Varis, and S.-P. Hannula, Optimization and Characterization of High Velocity Oxy-fuel Sprayed Coatings: Techniques, Materials, and Applications, Coatings, 2011, 1(1), p 17-52CrossRefGoogle Scholar
  14. 14.
    A. Wank, A. Schwenk, B. Wielage, T. Grund, E. Friesen, and H. Pokhmurska, Behavior of Thermally Sprayed Wear Protective Coatings Exposed to Different Abrasive Wear Conditions in Comparison to Hard Chromium Platings, Proceedings of the International Thermal Spray Conference, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and G. Montavon, Ed., (Beijing), ASM International, 2007, p 1011-1016Google Scholar
  15. 15.
    C. Lyphout and K. Sato, Screening Design of Hard Metal Feedstock Powders for Supersonic Air Fuel Processing, Surf. Coat. Technol., 2014, 258, p 447-457CrossRefGoogle Scholar
  16. 16.
    T. Varis, T. Suhonen, A. Ghabchi, A. Valarezo, S. Sampath, X. Liu, and S.P. Hannula, Formation Mechanisms, Structure, and Properties of HVOF-Sprayed WC-CoCr Coatings: An Approach Toward Process Maps, J. Therm. Spray Technol., 2014, 23(6), p 1009-1018CrossRefGoogle Scholar
  17. 17.
    Q. Wang, Z. Chen, L. Li, and G. Yang, The Parameters Optimization and Abrasion Wear Mechanism of Liquid Fuel HVOF Sprayed Bimodal Wc-12Co Coating, Surf. Coat. Technol., 2012, 206(8-9), p 2233-2241CrossRefGoogle Scholar
  18. 18.
    W. Tillmann, E. Vogli, I. Baumann, G. Matthaeus, and T. Ostrowski, Influence of the HVOF Gas Composition on the Thermal Spraying of WC-Co Submicron Powders (−8 + 1 μm) to Produce Superfine Structured Cermet Coatings, J. Therm. Spray Technol., 2008, 17(5-6), p 924-932CrossRefGoogle Scholar
  19. 19.
    J.A. Picas, M. Punset, M.T. Baile, E. Martín, and A. Forn, Effect of Oxygen/Fuel Ratio on the in-Flight Particle Parameters and Properties of HVOF WC-CoCr Coatings, Surf. Coat. Technol., 2011, 205(SUPPL. 2), p S364-S368CrossRefGoogle Scholar
  20. 20.
    A.S.M. Ang, H. Howse, S.A. Wade, and C.C. Berndt, Development of Processing Windows for New Generation HOVF Carbide-Based Coatings, Proceedings of the International Thermal Spray Conference, A. McDonald, A. Agarwal, G. Bolelli, A. Concustell, Y.-C. Lau, F.-L. Toma, E. Turunen, and C. Widener, Ed., (Long Beach, California, USA), ASM International, 2015, p 976-981Google Scholar
  21. 21.
    C. Moreau, M. Lamontagne, and P. Cielo, Method and Apparatus for Monitoring the Temperature and Velocity of Plasma Sprayed Particles, US5180921 A. U. S. Patent Office, 1993Google Scholar
  22. 22.
    ASTM E2109—01 (2007) Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings, ASTM International, West Conshohocken, PA, 2007Google Scholar
  23. 23.
    A.S.M. Ang and C.C. Berndt, A Review of Testing Methods for Thermal Spray Coatings, Int. Mater. Rev., 2014, 59(4), p 179-223CrossRefGoogle Scholar
  24. 24.
    ASTM C1327—08 Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics, ASTM International, West Conshohocken, PA, 2008Google Scholar
  25. 25.
    L. Zhao, M. Maurer, F. Fischer, and E. Lugscheider, Study of HVOF Spraying of WC-CoCr Using On-line Particle Monitoring, Surf. Coat. Technol., 2004, 185(2-3), p 160-165CrossRefGoogle Scholar
  26. 26.
    X. Guo, M.P. Planche, J. Chen, and H. Liao, Relationships between In-flight Particle Characteristics and Properties of HVOF Sprayed Wc-CoCr Coatings, J. Mater. Process. Technol., 2014, 214(2), p 456-461CrossRefGoogle Scholar
  27. 27.
    K. Bobzin, F.B.G. Ernst, J.B. Zwick, M. Brühl, and G. Matthäus, Analysis of In-flight Particle Properties of Ultrafine Powders, Proceedings of the International Thermal Spray Conference, B.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and G. Montavon, Ed., (Beijing), ASM International, 2007, p 582-587Google Scholar
  28. 28.
    B.R. Marple and R.S. Lima, Process Temperature/Velocity-Hardness-Wear Relationships for High-Velocity Oxyfuel Sprayed Nanostructured and Conventional Cermet Coatings, J. Therm. Spray Technol., 2005, 14(1), p 67-76CrossRefGoogle Scholar
  29. 29.
    I. López Báez, C. Poblano Salas, J. Muñoz Saldaña, and L. Trápaga Martínez, Effects of the Modification of Processing Parameters on Mechanical Properties of HVOF Cr2C3-25NiCr Coatings, J. Therm. Spray Technol., 2015, 24(6), p 938-946CrossRefGoogle Scholar
  30. 30.
    W.C. Lih, S.H. Yang, C.Y. Su, S.C. Huang, I.C. Hsu, and M.S. Leu, Effects of Process Parameters on Molten Particle Speed and Surface Temperature and the Properties of HVOF CrC/NiCr Coatings, Surf. Coat. Technol., 2000, 133-134, p 54-60CrossRefGoogle Scholar
  31. 31.
    D. Poirier, J.G. Legoux, and R.S. Lima, Engineering HVOF-Sprayed Cr3C2-NiCr Coatings: The Effect of Particle Morphology and Spraying Parameters on the Microstructure, Properties, and High Temperature Wear Performance, J. Therm. Spray Technol., 2013, 22(2-3), p 280-289CrossRefGoogle Scholar
  32. 32.
    F.X. Ye, S.H. Wu, and A. Ohmori, Microstructure and Oxidation Behavior of Cr39Ni7C Cermet Coatings Deposited by Diamond Jet Spray Process, J. Therm. Spray Technol., 2008, 17(5-6), p 942-947CrossRefGoogle Scholar
  33. 33.
    A.S.M. Ang, H. Howse, S.A. Wade, and C.C. Berndt, Manufacturing of Nickel Based Cermet Coatings by HVOF Process, Surface Engineering, 2015. doi: 10.1179/1743294415Y.0000000031 Google Scholar
  34. 34.
    S. Matthews, B. James, and M. Hyland, High Temperature Erosion of Cr3C2-NiCr Thermal Spray Coatings—The Role of Phase Microstructure, Surf. Coat. Technol., 2009, 203(9), p 1144-1153CrossRefGoogle Scholar
  35. 35.
    Š. Houdková, M. Kašparová, and F. Zahálka, The Influence of Spraying Angle on Properties of HVOF Sprayed Hardmetal Coatings, J. Therm. Spray Technol., 2010, 19(5), p 893-901CrossRefGoogle Scholar
  36. 36.
    S. Osawa, T. Itsukaichi, and R. Ahmed, Influence of Powder Size and Strength on HVOF Spraying -Mapping the Onset of Spitting, Proceedings of the International Thermal Spray Conference, C. Moreau and B.R. Marple, Ed., May 5-8, 2003 (Orlando, FL, USA), ASM International, 2003, p 1447-1453Google Scholar
  37. 37.
    J.A. Picas, A. Forn, and G. Matthäus, HVOF Coatings as an Alternative to Hard Chrome for Pistons and Valves, Wear, 2006, 261(5-6), p 477-484CrossRefGoogle Scholar
  38. 38.
    W. Tillmann, E. Vogli, I. Baumann, G. Kopp, and C. Weihs, Desirability-Based Multi-criteria Optimization of HVOF Spray Experiments to Manufacture Fine Structured Wear-Resistant 75Cr3C2-25(NiCr20) Coatings, J. Therm. Spray Technol., 2010, 19(1-2), p 392-408CrossRefGoogle Scholar

Copyright information

© ASM International 2015

Authors and Affiliations

  • Andrew Siao Ming Ang
    • 1
    • 2
    Email author
  • Hugo Howse
    • 3
  • Scott A. Wade
    • 1
    • 2
  • Christopher C. Berndt
    • 1
    • 2
    • 4
  1. 1.Industrial Research Institute SwinburneSwinburne University of TechnologyHawthornAustralia
  2. 2.Defence Materials Technology CentreHawthornAustralia
  3. 3.United Surface Technologies Pty LtdAltonaAustralia
  4. 4.Department of Materials Science and EngineeringStony Brook UniversityStony BrookUSA

Personalised recommendations