Advertisement

Journal of Thermal Spray Technology

, Volume 24, Issue 7, pp 1277–1288 | Cite as

Microstructural Analysis of Cold-Sprayed Ti-6Al-4V at the Micro- and Nano-Scale

  • A. M. Birt
  • V. K. ChampagneJr.
  • R. D. SissonJr.
  • D. Apelian
Peer Reviewed

Abstract

The microstructure of cold-sprayed Ti-6Al-4V is unlike the structure resulting from any other processing technique. The unique characteristics are derived from the solid state thermomechanical processing of predominantly martensitic feedstock powders. During deposition, these powders undergo high strain rate deformation, leading to shear band-induced transformation of martensitic grains into nano-scale martensite, equiaxed alpha structures, and nanostructured alpha grains. The resultant microstructure evolution is dependent on the magnitude and direction of shear undergone by the particles. The specific structure and mechanism for formation of these regions will be discussed in detail using nanohardness mapping, scanning electron microscopy, and transmission electron microscopy.

Keywords

cold spray microstructure morphology Ti-6Al-4V transformation 

Notes

Acknowledgments

Special thanks to U.S. Army Research Laboratory Contract #: W911NF-10-2-0098 for sponsoring and directing this research, as well as taking the time to consult and produce samples.

References

  1. 1.
    W. Babcock, AMPTIAC, AMPTIAC Newsl., 2002, 6(2), p 26-31Google Scholar
  2. 2.
    S. Seong, O. Younossi, and B.W. Goldsmith, Titanium: Industrial Base, Price Trends, and Technology Initiatives, Rand Corporation, Santa Monica, 2009Google Scholar
  3. 3.
    E. Brandl, A. Schoberth, and C. Leyens, Morphology, Microstructure, and Hardness of Titanium (Ti-6Al-4V) Blocks Deposited by Wire-Feed Additive Layer Manufacturing (ALM), Mater. Sci. Eng. A, 2012, 532, p 295-307CrossRefGoogle Scholar
  4. 4.
    L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, and J.-P. Kruth, A study of the Microstructural Evolution During Selective Laser Melting of Ti-6Al-4V, Acta Mater., 2010, 58(9), p 3303-3312CrossRefGoogle Scholar
  5. 5.
    B. Baufeld, O.V. der Biest, and R. Gault, Additive Manufacturing of Ti-6Al-4V Components by Shaped Metal Deposition: Microstructure and Mechanical Properties, Mater. Des., 2010, 31, p S106-S111CrossRefGoogle Scholar
  6. 6.
    T. Vilaro, C. Colin, and J.-D. Bartout, As-Fabricated and Heat-Treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting, Metall. Mater. Trans. A, 2011, 42(10), p 3190-3199CrossRefGoogle Scholar
  7. 7.
    L. Facchini, E. Magalini, P. Robotti, and A. Molinari, Microstructure and Mechanical Properties of Ti-6Al-4V Produced by Electron Beam Melting of Pre-alloyed Powders, Rapid Prototyp. J., 2009, 15(3), p 171-178CrossRefGoogle Scholar
  8. 8.
    L. Murr, S. Quinones, S. Gaytan, M. Lopez, A. Rodela, E. Martinez et al., Microstructure and Mechanical Behavior of Ti-6Al-4V Produced by Rapid-Layer Manufacturing, for Biomedical Applications, J. Mech. Behav. Biomed. Mater., 2009, 2(1), p 20-32CrossRefGoogle Scholar
  9. 9.
    L. Murr, E. Esquivel, S. Quinones, S. Gaytan, M. Lopez, E. Martinez et al., Microstructures and Mechanical Properties of Electron Beam-Rapid Manufactured Ti-6Al-4V Biomedical Prototypes Compared to Wrought Ti-6Al-4V, Mater. Charact., 2009, 60(2), p 96-105CrossRefGoogle Scholar
  10. 10.
    X. Wu, J. Liang, J. Mei, C. Mitchell, P. Goodwin, and W. Voice, Microstructures of Laser-Deposited Ti-6Al-4V, Mater. Des., 2004, 25(2), p 137-144CrossRefGoogle Scholar
  11. 11.
    G. Bae, K. Kang, J.-J. Kim, and C. Lee, Nanostructure Formation and Its Effects on the Mechanical Properties of Kinetic Sprayed Titanium Coating, Mater. Sci. Eng. A, 2010, 527(23), p 6313-6319CrossRefGoogle Scholar
  12. 12.
    V.K. Champagne, The Repair of Magnesium Rotorcraft Components by Cold Spray, J. Fail. Anal. Prev., 2008, 8(2), p 164-175CrossRefGoogle Scholar
  13. 13.
    V.K. Champagne, D.J. Helfritch, and M.D. Trexler, Some Material Characteristics of Cold-Sprayed Structures, Adv. Mater. Sci. Eng., 2007, Article ID 27347.Google Scholar
  14. 14.
    Q. Zhang, C.-J. Li, C.-X. Li, G.-J. Yang, and S.-C. Lui, Study of Oxidation Behavior of Nanostructured NiCrAlY Bond Coatings Deposited by Cold Spraying, Surf. Coat. Technol., 2008, 202(14), p 3378-3384CrossRefGoogle Scholar
  15. 15.
    B. DeForce, T. Eden, J. Potter, V. Champagne, P. Leyman, and D. Helfritch, Application of Aluminum Coatings for the Corrosion Protection of Magnesium by Cold Spray, Tri-Service Corrosion Conference, 2007.Google Scholar
  16. 16.
    N. Sanpo, M.L. Tan, P. Cheang, and K. Khor, Antibacterial Property of Cold-Sprayed Ha-Ag/Peek Coating, J. Therm. Spray Technol., 2009, 18(1), p 10-15CrossRefGoogle Scholar
  17. 17.
    T. Stoltenhoff, H. Kreye, and H. Richter, An Analysis of the Cold Spray Process and Its Coatings, J. Therm. Spray Technol., 2002, 11(4), p 542-550CrossRefGoogle Scholar
  18. 18.
    H. Assadi, T. Schmidt, H. Richter, J.-O. Kliemann, K. Binder, F. Gärtner et al., On Parameter Selection in Cold Spraying, J. Therm. Spray Technol., 2011, 20(6), p 1161-1176CrossRefGoogle Scholar
  19. 19.
    H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394CrossRefGoogle Scholar
  20. 20.
    S. Yue, A. Rezaeian, J.G. Legoux, W. Wong, and E. Irissou, Cold Spray Characteristics of Commercially Pure Ti and Ti-6Al-4V, Adv. Mater. Res., 2010, 89, p 639-644Google Scholar
  21. 21.
    C.-J. Li and W.-Y. Li, Deposition Characteristics of Titanium Coating in Cold Spraying, Surf. Coat. Technol., 2003, 167(2), p 278-283CrossRefGoogle Scholar
  22. 22.
    D. Goldbaum, J.M. Shockley, R.R. Chromik, A. Rezaeian, S. Yue, J.-G. Legoux et al., The Effect of Deposition Conditions on Adhesion Strength of Ti and Ti6Al4V Cold Spray Splats, J. Therm. Spray Technol., 2012, 21(2), p 288-303CrossRefGoogle Scholar
  23. 23.
    M.J. Donachie, Titanium: A Technical Guide, ASM International, Materials Park, 2000Google Scholar
  24. 24.
    J. Sieniawski, W. Ziaja, K. Kubiak, and M. Motyka, Microstructure and Mechanical Properties of High Strength Two-Phase Titanium Alloys, 2013Google Scholar
  25. 25.
    R. Boyer, An Overview on the Use of Titanium in the Aerospace Industry, Mater. Sci. Eng. A, 1996, 213(1), p 103-114CrossRefGoogle Scholar
  26. 26.
    S.H. Zahiri, D. Fraser, and M. Jahedi, Recrystallization of Cold Spray-Fabricated CP Titanium Structures, J. Therm. Spray Technol., 2009, 18(1), p 16-22CrossRefGoogle Scholar
  27. 27.
    P. Vo, E. Irissou, J.-G. Legoux, and S. Yue, Mechanical and Microstructural Characterization of Cold-Sprayed Ti-6Al-4V After Heat Treatment, J. Therm. Spray Technol., 2013, 22(6), p 954-964CrossRefGoogle Scholar
  28. 28.
    H. Chandler, Heat Treater’s Guide: Practices and Procedures for Nonferrous Alloys, ASM International, Materials Park, 1996Google Scholar
  29. 29.
    T. Ahmed and H. Rack, Phase Transformations During Cooling in α + β Titanium Alloys, Mater. Sci. Eng. A, 1998, 243(1), p 206-211CrossRefGoogle Scholar
  30. 30.
    E. Collings, The Physical Metallurgy of Titanium Alloys, American Society for Metals, Metals Park, OH, 1984Google Scholar
  31. 31.
    A. Birt, V. Champagne, R. Sisson, and D. Apelian, Microstructural Analysis of Ti-6Al-4V Powder for Cold Gas Dynamic Spray Applications, Adv. Powder Technol., 2014. doi: 10.1016/j.apt.2015.07.008
  32. 32.
    G.F. Vander Voort, Metallography: Principles And Practices, ASM International, Materials Park, 1984Google Scholar
  33. 33.
    T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54(3), p 729-742CrossRefGoogle Scholar
  34. 34.
    S. Rahmati and A. Ghaei, The Use of Particle/Substrate Material Models in Simulation of Cold-Gas Dynamic-Spray Process, J. Therm. Spray Technol., 2014, 23(3), p 530-540CrossRefGoogle Scholar
  35. 35.
    R.S. Mishra, V. Stolyarov, C. Echer, R. Valiev, and A. Mukherjee, Mechanical Behavior and Superplasticity of a Severe Plastic Deformation Processed Nanocrystalline Ti-6Al-4V Alloy, Mater. Sci. Eng. A, 2001, 298(1), p 44-50CrossRefGoogle Scholar
  36. 36.
    L. Bassett, The Effect of Cold Spray Impact Conditions on Particle Deformation and Temperature Increase, 2014 (submitted)Google Scholar

Copyright information

© ASM International 2015

Authors and Affiliations

  • A. M. Birt
    • 1
  • V. K. ChampagneJr.
    • 2
  • R. D. SissonJr.
    • 1
  • D. Apelian
    • 1
  1. 1.Metal Processing InstituteWPIWorcesterUSA
  2. 2.U.S. Army Research LaboratoryAberdeen Proving GroundsUSA

Personalised recommendations