Advertisement

Journal of Thermal Spray Technology

, Volume 24, Issue 7, pp 1153–1165 | Cite as

The Solution Precursor Plasma Spray (SPPS) Process: A Review with Energy Considerations

  • Eric H. Jordan
  • Chen JiangEmail author
  • Maurice Gell
Peer Reviewed

Abstract

Solution precursor plasma spray (SPPS) is a coating deposition process that uses conventional plasma spray equipment, and solution precursors, rather than ceramic or metal powders, as starting materials. Because the process is exposed to oxygen at high temperatures, nearly all coatings, to date, are oxide ceramics. In this review, both the advantages and the disadvantages of the SPPS process and some comparisons made to the suspension plasma spray (SPS) process will be discussed. The advantages of the SPPS process include rapid exploration of compositions and fabrication of advanced coatings with unique microstructural features. Examples presented span densities from porous thermal barrier coatings (TBCs) to dense TiO2 coatings. Two TBCs are in an advanced development stage: (1) a low thermal conductivity YSZ TBC and (2) a high-temperature yttrium aluminum garnet TBC. As for disadvantages, there are (1) the additional development work for each new precursor and (2) a lower standoff distance and deposition rate than the APS process, related to the evaporation of the solvent. The SPS process shares the same disadvantages. In developing new coatings, a number of factors should be considered and understood, which would help to shorten future development efforts. Future directions of the SPPS process will also be discussed.

Keywords

deposition efficiency heat transfer microstructure particle plasma interaction solution precursor spraying suspension spraying thermal barrier coatings (TBCs) 

References

  1. 1.
    L. Pawlowski, Suspension and Solution Thermal Spray Coatings, Surf. Coat. Technol., 2009, 203(19), p 2807-2829CrossRefGoogle Scholar
  2. 2.
    P. Fauchais, A. Joulia, S. Goutier, C. Chazelas, M. Vardelle, A. Vardelle, and S. Rossignol, Suspension and Solution Plasma Spraying, J. Phys. D: Appl. Phys., 2013, 46(22), p 224015CrossRefGoogle Scholar
  3. 3.
    E.H. Jordan, L. Xie, M. Gell, N.P. Padture, B. Cetegen, A. Ozturk, X. Ma, J. Roth, T.D. Xiao, and P.E. Bryant, Superior Thermal Barrier Coatings Using Solution Precursor Plasma Spray, J. Therm. Spray Technol., 2004, 13(1), p 57-65CrossRefGoogle Scholar
  4. 4.
    M. Gell, E.H. Jordan, M. Telcholz, B.M. Cetegen, N.P. Padture, L. Xie, D. Chen, X. Ma, and J. Roth, Thermal Barrier Coatings Made by the Solution Precursor Plasma Spray Process, J. Therm. Spray Technol., 2008, 17(1), p 124-135CrossRefGoogle Scholar
  5. 5.
    A. Killinger, R. Gadow, G. Mauer, A. Guignard, R. Vassen, and D. Stöver, Review of New Developments in Suspension and Solution Precursor Thermal Spray Processes, J. Therm. Spray Technol., 2011, 20(4), p 677-695CrossRefGoogle Scholar
  6. 6.
    O. Tingaud, P. Bertrand, and G. Bertrand, Microstructure and Tribological Behavior of Suspension Plasma Sprayed Al2O3 and Al2O3-YSZ Composite Coatings, Surf. Coat. Technol., 2010, 205(4), p 1004-1008CrossRefGoogle Scholar
  7. 7.
    S. Kirihara, Y. Itakura, and S. Tasaki, Development of Thermal Spraying and Coating Techniques by Using Thixotropic Slurries Including Metals and Ceramics, J. Phys.: Conf. Ser., 2013, 419, p 0122039Google Scholar
  8. 8.
    J. Karthikeyan, C.C. Berndt, S. Reddy, J.-Y. Wang, A.H. King, and H. Herman, Nanomaterial Deposition Formed by DC Plasma Spraying of Liquid Feedstocks, J. Am. Ceram. Soc., 1998, 81(1), p 121-128CrossRefGoogle Scholar
  9. 9.
    N.P. Padture, K.W. Schlichting, T. Bhatia, A. Ozturk, B. Cetegen, E.H. Jordan, M. Gell, S. Jiang, T.D. Xiao, P.R. Strutt, E. Garcia, P. Miranzo, and M.I. Osendi, Towards Durable Thermal Barrier Coatings with Novel Microstructures Deposited by Solution-Precursor Plasma Spray, Acta Mater., 2001, 49(12), p 2251-2257CrossRefGoogle Scholar
  10. 10.
    T. Bhatia, A. Ozturk, L. Xie, E.H. Jordan, M. Gell, X. Ma, and N.P. Padture, Mechanisms of Ceramic Coating Deposition in Solution-Precursor Plasma Spray, J. Mater. Res., 2012, 17(9), p 2363-2372CrossRefGoogle Scholar
  11. 11.
    L. Xie, X. Ma, E.H. Jordan, N.P. Padture, D.T. Xiao, and M. Gell, Identification of Coating Deposition Mechanisms in the Solution-Precursor Plasma-Spray Process Using Model Spray Experiments, Mater. Sci. Eng. A, 2003, 362(1), p 204-212CrossRefGoogle Scholar
  12. 12.
    L. Xie, X. Ma, E.H. Jordan, N.P. Padture, T.D. Xiao, and M. Gell, Deposition of Thermal Barrier Coatings Using the Solution Precursor Plasma Spray Process, J. Mater. Sci., 2004, 39(5), p 1636-1639CrossRefGoogle Scholar
  13. 13.
    M. Gell, L. Xie, X. Ma, E.H. Jordan, and N.P. Padture, Highly Durable Thermal Barrier Coatings Made by the Solution Precursor Plasma Spray Process, Surf. Coat. Technol., 2004, 177, p 97-102CrossRefGoogle Scholar
  14. 14.
    L. Xie, X. Ma, A. Ozturk, E.H. Jordan, N.P. Padture, B.M. Cetegen, D.T. Xiao, and M. Gell, Processing Parameter Effects on Solution Precursor Plasma Spray Process Spray Patterns, Surf. Coat. Technol., 2004, 183(1), p 51-61CrossRefGoogle Scholar
  15. 15.
    L. Xie, E.H. Jordan, N.P. Padture, and M. Gell, Phase and Microstructural Stability of Solution Precursor Plasma Sprayed Thermal Barrier Coatings, Mater. Sci. Eng. A, 2004, 381(1), p 189-195CrossRefGoogle Scholar
  16. 16.
    Y.G. Shan, Y.L. Wang, and T. Coyle, Analysis of Deposits Formation in Plasma Spraying with Liquid Precursors, Appl. Therm. Eng., 2013, 51(1-2), p 690-697CrossRefGoogle Scholar
  17. 17.
    L. Xie, D. Chen, E.H. Jordan, A. Ozturk, F. Wu, X. Ma, B.M. Cetegen, and M. Gell, Formation of Vertical Cracks in Solution-Precursor Plasma-Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 2006, 201(3), p 1058-1064CrossRefGoogle Scholar
  18. 18.
    A.D. Jadhav, N.P. Padture, F. Wu, E.H. Jordan, and M. Gell, Thick Ceramic Thermal Barrier Coatings with High Durability Deposited Using Solution Precursor Plasma Spray, Mater. Sci. Eng. A, 2005, 405(1), p 313-320CrossRefGoogle Scholar
  19. 19.
    Y. Wang and T.W. Coyle, Solution Precursor Plasma Spray of Nickel-Yittia Stabilized Zirconia Anodes for Solid Oxide Fuel Cell Application, J. Therm. Spray Technol., 2007, 16(5), p 898-904CrossRefGoogle Scholar
  20. 20.
    C.K. Muoto, E.H. Jordan, M. Gell, and M. Aindow, Identification of Desirable Precursor Properties for Solution Precursor Plasma Spray, J. Therm. Spray Technol., 2011, 20(4), p 802CrossRefGoogle Scholar
  21. 21.
    D. Chen, E.H. Jordan, M. Gell, and X. Ma, Dense TiO2 Coating Using the Solution Precursor Plasma Spray Process, J. Am. Ceram. Soc., 2008, 91(3), p 865-872CrossRefGoogle Scholar
  22. 22.
    A. Aygun, A.L. Vasiliev, N.P. Padture, and X. Ma, Novel Thermal Barrier Coatings that are Resistant to High-Temperature Attack by Glassy Deposits, Acta Mater., 2007, 55(20), p 6734-6745CrossRefGoogle Scholar
  23. 23.
    A.D. Jadhav, N.P. Padture, E.H. Jordan, M. Gell, P. Miranzo, and E.R. Fuller, Jr., Low-Thermal-Conductivity Plasma-Sprayed Thermal Barrier Coatings with Engineered Microstructures, Acta Mater., 2006, 54(12), p 3343-3349CrossRefGoogle Scholar
  24. 24.
    E.H. Jordan, C. Jiang, J. Roth, and M. Gell, Low Thermal Conductivity Yttria-Stabilized Zirconia Thermal Barrier Coatings Using the Solution Precursor Plasma Spray Process, J. Therm. Spray Technol., 2014, 23(5), p 849-859CrossRefGoogle Scholar
  25. 25.
    S.Y. Semenov and B.M. Cetegen, Spectroscopic Temperature Measurements in Direct Current Arc Plasma Jets Used in Thermal Spray Processing of Materials, J. Therm. Spray Technol., 2001, 10(2), p 326-336CrossRefGoogle Scholar
  26. 26.
    S. Basu and B.M. Cetegen, Modeling of Thermo-physical Processes in Liquid Ceramic Precursor Droplets Injected into a Plasma Jet, Int. J. Heat Mass Transf., 2007, 50(17), p 3278-3290CrossRefGoogle Scholar
  27. 27.
    E.H. Jordan, M. Gell, C. Jiang, J. Wang, and B. Nair, High Temperature Thermal Barrier Coating Made by the Solution Precursor Plasma Spray Process, ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Dusseldorf, Germany, 2014.Google Scholar
  28. 28.
    D. Chen, E.H. Jordan, and M. Gell, Thermal and Crystallization Behavior of Zirconia Precursor Used in the Solution Precursor Plasma Spray Process, J. Mater. Sci., 2007, 42(14), p 5576-5580CrossRefGoogle Scholar
  29. 29.
    D. Chen, E.H. Jordan, M. Gell, and X. Ma, Dense Alumina-Zirconia Coatings Using the Solution Precursor Plasma Spray Process, J. Am. Ceram. Soc., 2008, 91(2), p 359-365CrossRefGoogle Scholar
  30. 30.
    S. Basu, E.H. Jordan, and B.M. Cetegen, Fluid Mechanics and Heat Transfer of Liquid Precursor Droplets Injected into High-Temperature Plasmas, J. Therm. Spray Technol., 2008, 17(1), p 60-72CrossRefGoogle Scholar
  31. 31.
    D. Chen, E.H. Jordan, and M. Gell, Effect of Solution Concentration on Splat Formation and Coating Microstructure Using the Solution Precursor Plasma Spray Process, Surf. Coat. Technol., 2008, 202(10), p 2132-2138CrossRefGoogle Scholar
  32. 32.
    D. Chen, E.H. Jordan, M. Gell, and M. Wei, Apatite Formation on Alkaline-Treated Dense TiO2 Coatings Deposited Using the Solution Precursor Plasma Spray Process, Acta Biomater., 2004, 4(3), p 553-559CrossRefGoogle Scholar
  33. 33.
    D. Chen, E.H. Jordan, and M. Gell, Porous TiO2 Coating Using the Solution Precursor Plasma Spray Process, Surf. Coat. Technol., 2008, 202(24), p 6113-6119CrossRefGoogle Scholar
  34. 34.
    D. Chen, E.H. Jordan, M.W. Renfro, and M. Gell, Dy:YAG Phosphor Coating Using the Solution Precursor Plasma Spray Process, J. Am. Ceram. Soc., 2009, 92(1), p 271-286CrossRefGoogle Scholar
  35. 35.
    D. Chen, E.H. Jordan, and M. Gell, Solution Precursor High-Velocity Oxy-Fuel Spray Ceramic Coatings, J. Eur. Ceram. Soc., 2009, 29(16), p 3349-3353CrossRefGoogle Scholar
  36. 36.
    D. Chen, E.H. Jordan, and M. Gell, The Solution Precursor Plasma Coatings: Influence of Solvent Type, Plasma Chem. Plasma Process., 2010, 30(1), p 111-119CrossRefGoogle Scholar
  37. 37.
    D. Chen, E.H. Jordan, M.W. Renfro, and M. Gell, Solution Precursor Plasma Spray Eu: Y2O3 Phosphor Coating, Int. J. Appl. Ceram. Technol., 2012, 9(3), p 636-641CrossRefGoogle Scholar
  38. 38.
    C. Metcalfe, J. Kuhn, and O. Kesler, Characterization of Ni-YSZ Anodes for Solid Oxide Fuel Cells Fabricated by Suspension Plasma Spraying with Axial Feedstock Injection, J. Power Sour., 2013, 243, p 172-180CrossRefGoogle Scholar
  39. 39.
    W.Z. Wang, T. Coyle, and D. Zhao, Preparation of Lanthanum zirconate Coatings by the Solution Precursor Plasma Spray, J. Therm. Spray Technol., 2014, 23(5), p 827-832CrossRefGoogle Scholar
  40. 40.
    Y. Wang and T.W. Coyle, Solution Precursor Plasma Spray of Porous La1-xSrxMnO3 Perovskite Coatings for SOFC Cathode Application, J. Fuel Cell Sci. Technol., 2010, 8(2), p 021005CrossRefGoogle Scholar
  41. 41.
    Y. Wang and T.W. Coyle, Optimization of Solution Precursor Plasma Spray Process by Statistical Design of Experiment, J. Therm. Spray Technol., 2008, 17(5), p 692-699CrossRefGoogle Scholar
  42. 42.
    S.V. Joshi, G. Sivakumar, T. Raghuveer, and R.O. Dusane, Hybrid Plasma-Sprayed Thermal Barrier Coatings Using Powder and Solution Precursor Feedstock, J. Therm. Spray Technol., 2014, 23(4), p 616-624CrossRefGoogle Scholar
  43. 43.
    G. Sivakumar, R.O. Dusane, and S.V. Joshi, A Novel Approach to Process Phase Pure Alpha-Al2O3 Coatings by Solution Precursor Plasma Spraying, J. Eur. Ceram. Soc., 2013, 33(13-14), p 2823-2829CrossRefGoogle Scholar
  44. 44.
    N. Sanpo, J. Wang, A.S.M. Ang, and C.C. Berndt, Influence of the Different Organic Chelating Agents on the Topography, Physical Properties and Phase of SPPS-Deposited Spinel Ferrite Splats, Appl. Surf. Sci., 2013, 284, p 171-178CrossRefGoogle Scholar
  45. 45.
    Y. Shan, T.W. Coyle, and J. Mostaghimi, 3D Modeling of Transport Phenomena and the Injection of the Solution Droplets in the Solution Precursor Plasma Spraying, J. Therm. Spray Technol., 2007, 16(5), p 736-743CrossRefGoogle Scholar
  46. 46.
    Y. Shan, T.W. Coyle, and J. Mostaghimi, Modeling the Influence of Injection Modes on the Evolution of Solution Sprays in a Plasma Jet, J. Therm. Spray Technol., 2010, 19(1), p 248-254CrossRefGoogle Scholar
  47. 47.
    C. Marchand, C. Chazelas, G. Mariaux, and A. Vardelle, Liquid Precursor Plasma Spraying: Modeling the Interactions Between the Transient Plasma Jet and the Droplets, J. Therm. Spray Technol., 2007, 16(5), p 705-712CrossRefGoogle Scholar
  48. 48.
    Y. Shan, T.W. Coyle, and J. Mostaghimi, Numerical Simulation of Droplet Breakup and Collision in the Solution Precursor Plasma Spraying, J. Therm. Spray Technol., 2007, 16(5), p 698-704CrossRefGoogle Scholar
  49. 49.
    A. Vardelle, C. Chazelas, C. Marchand, and G. Mariaux, Modeling Time-Dependent Phenomena in Plasma Spraying of Liquid Precursors, Pure Appl. Chem., 2008, 80(9), p 1981-1991CrossRefGoogle Scholar
  50. 50.
    A. Ozturk and B.M. Cetegen, Modeling of Plasma Assisted Formation of Precipitates in Zirconium Containing Liquid Precursor Droplets, Mater. Sci. Eng. A, 2004, 384(1), p 331-351CrossRefGoogle Scholar
  51. 51.
    A. Ozturk and B.M. Cetegen, Modeling of Axially and Transversely Injected Precursor Droplets into a Plasma Environment, Int. J. Heat Mass Transf., 2005, 48(21), p 4367-4383CrossRefGoogle Scholar
  52. 52.
    Y. Shan, Z.P. Wei, T.W. Coyle, and J. Mostaghimi, Numerical Investigation of the Influence of Injected Modes in the Solution Precursor Plasma Spraying, Proceedings of the International Thermal Spray Conference, Las Vegas, NV, 2009.Google Scholar
  53. 53.
    D. Soysal and A. Ansar, A New Approach to Understand Liquid Injection into Atmospheric Plasma Jets, Surf. Coat. Technol., 2013, 220, p 187-190CrossRefGoogle Scholar
  54. 54.
    C.K. Muoto, E.H. Jordan, M. Gell, and M. Aindow, Effects of Precursor Chemistry on the Structural Characteristics of Y2O3-MgO Nanocomposites Synthesized by a Combined Sol-Gel/Thermal Decomposition Route, J. Am. Ceram. Soc., 2011, 94(2), p 372-381CrossRefGoogle Scholar
  55. 55.
    A. Ozturk, Diagnostics and Modeling of Yttria-Stabilized Zirconia Formation in Solution Precursor Plasma Spray Process, Storrs CT, PhD thesis, 2005.Google Scholar
  56. 56.
    K. VanEvery, M.J. Krane, R.W. Trice, H. Wang, W. Porter, M. Besser, D. Sordelet, J. Ilavsky, and J. Almer, Column Formation in Suspension Plasma-Sprayed Coatings and Resultant Thermal Properties, J. Therm. Spray Technol., 2011, 20(4), p 817-828CrossRefGoogle Scholar
  57. 57.
    A. Joulia, G. Bolelli, E. Gualtieri, L. Lusvarghi, S. Valeri, M. Varelle, S. Rossignol, and A. Vardelle, Comparing the Deposition Mechanisms in Suspension Plasma Spray (SPS) and Solution Precursor Plasma Spray (SPPS) Deposition of Yttria-Stabilized Zirconia (YSZ), J. Eur. Ceram. Soc., 2014, 34(15), p 3925-3940CrossRefGoogle Scholar
  58. 58.
    H.B. Guo, H. Murakami, and S. Kuroda, Effect of Hollow Spherical Powder Size Distribution on Porosity and Segmentation Cracks in Thermal Barrier Coatings, J. Am. Ceram. Soc., 2006, 89(12), p 3797-3804CrossRefGoogle Scholar
  59. 59.
    F. Tarasi, M. Medraj, A. Dolatabadi, J. Oberste-Berghaus, and C. Moreau, Amorphous and Crystalline Phase Formation During Suspension Plasma Spraying of the Alumina-Zirconia Composite, J. Eur. Ceram. Soc., 2011, 31(15), p 2903-2913CrossRefGoogle Scholar
  60. 60.
    J. Oberste-Berghaus, J.-G. Legoux, C. Moreau, F. Tarasi, and T. Chraska, Mechanical and Thermal Transport Properties of Suspension Thermal-Sprayed Alumina-Zirconia Composite Coatings, J. Therm. Spray Technol., 2008, 17(1), p 91-104CrossRefGoogle Scholar
  61. 61.
    C.S. Giggins, N.P. Anderson, R.S. Mullin, L.A. Riendeau, and N.E. Ulion, EB-PVD Method for Applying Ceramic Coatings, U.S. Patent 5087477 A, 5 Feb 1990.Google Scholar
  62. 62.
    D.M. Gray, Y.-C. Lau, C.A. Johnson, M.P. Borom, and W.A. Nelson, Thermal Barrier Coatings Having an Improved Columnar Microstructure, U.S. Patent 5830586, 3 Nov 1998.Google Scholar
  63. 63.
    B.S. Senturk, H.F. Garces, A.L. Ortiz, G. Dwivedi, S. Sampath, and N.P. Padture, CMAS-Resistant Plasma Sprayed Thermal Barrier Coatings Based on Y2O3-Stabilized ZrO2 with Al3+ and Ti4+ Solute Additions, J. Therm. Spray Technol., 2014, 23(4), p 708-715CrossRefGoogle Scholar
  64. 64.
    F.-L. Toma, L.-M. Berger, C.C. Stahr, T. Naumann, and S. Langner, Microstructures and Functional Properties of Suspension-Sprayed Al2O3 and TiO2 Coatings: An Overview, J. Therm. Spray Technol., 2010, 19(1-2), p 262-274CrossRefGoogle Scholar
  65. 65.
    J. Rauch, N. Stiegler, A. Killinger, and R. Gadow, High Velocity Suspension Flame Spraying (HVSFS): Process Development and Industrial Applications, Thermal Spray 2009: Expanding Thermal Spray Performance to New Markets and Applications, Las Vegas NV, 2009.Google Scholar
  66. 66.
    R. Hui, J. Oberste-Berghaus, C. Deces-Petit, W. Qu, S. Yick, J.-G. Legoux, and C. Moreau, High Performance Metal-Supported Solid Oxide Fuel Cells Fabricated by Thermal Spray, J. Power Sour., 2009, 191, p 371-376CrossRefGoogle Scholar
  67. 67.
    J. Puranen, J. Laakso, M. Kylmalahti, and P. Vuoristo, Characterization of High-Velocity Solution Precursor Flame-Sprayed Manganese Cobalt Oxide Spinel Coatings for Metallic SOFC Interconnectors, J. Therm. Spray Technol., 2013, 22(5), p 622-630CrossRefGoogle Scholar

Copyright information

© ASM International 2015

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of ConnecticutStorrs MansfieldUSA
  2. 2.Department of Mechanical EngineeringUniversity of ConnecticutStorrs MansfieldUSA

Personalised recommendations