Skip to main content
Log in

Hybrid Processing with Powders and Solutions: A Novel Approach to Deposit Composite Coatings

  • Review
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Thermal spraying employing either solution precursor or suspension feedstock offers an exciting opportunity to obtain coatings with microstructures and characteristics that differ vastly compared to those conventionally produced using spray-grade powders. Both solution precursor plasma spray and suspension plasma spray techniques have been explored extensively in recent years for depositing wide ranging ceramic coatings for various functional applications. Encouraged by the properties achieved using the above solution-based feedstocks, a hybrid approach involving dual injection of solutions and powders, either simultaneously or sequentially, has been proposed and demonstrated to yield novel coating architectures. Although prior work on such hybrid processing is very limited, this overview seeks to present the concept, outline associated challenges, and demonstrate its efficacy to realize coatings with exciting and unusual properties using some illustrative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. L. Pawlowski, Finely Grained Nanometric and Submicrometric Coatings by Thermal Spraying: A Review, Surf. Coat. Technol., 2008, 202(18), p 4318-4328

    Article  Google Scholar 

  2. P. Fauchais and G. Montavon, Latest Developments in Suspension and Liquid Precursor Thermal Spraying, J. Therm. Spray Technol., 2010, 19(1-2), p 226-239

    Article  Google Scholar 

  3. J. Karthikeyan, C.C. Berndt, J. Tikkanen, J.Y. Wang, A.H. King, and H. Herman, Nanomaterial Powders and Deposits Prepared by Flame Spray Processing of Liquid Precursors, Nanostruct. Mater., 1997, 8(1), p 61-74

    Article  Google Scholar 

  4. J. Karthikeyan, C.C. Berndt, J. Tikkanen, S. Reddy, and H. Herman, Plasma Spray Synthesis of Nanomaterial Powders and Deposits, Mater. Sci. Eng. A, 1997, 238, p 275-286

    Article  Google Scholar 

  5. P. Fauchais, R. Etchart-Salas, V. Rat, J.F. Coudert, N. Caron, and K. Wittmann-Teneze, Parameters Controlling Liquid Plasma Spraying: Solutions, Sols, or Suspensions, J. Therm. Spray Technol., 2008, 17(1), p 31-59

    Article  Google Scholar 

  6. N.P. Padture, K.W. Schlichting, T. Bhatia, A. Ozturk, B. Cetegen, E.H. Jordan, M. Gell, S. Jiang, T.D. Xiao, P.R. Strutt, E. Garcia, P. Miranzo, and M.I. Osendi, Towards Durable Thermal Barrier Coatings with Novel Microstructures Deposited by Solution Precursor Plasma Spray, Acta Mater., 2001, 49, p 2251-2257

    Article  Google Scholar 

  7. E.H. Jordan, L. Xie, X. Ma, M. Gell, N.P. Padture, B. Cetegen, A. Ozturk, J. Roth, T.D. Xiao, and P.E.C. Bryant, Superior Thermal Barrier Coatings Using Solution Precursor Plasma Spray, J. Therm. Spray Technol., 2004, 13(1), p 57-65

    Article  Google Scholar 

  8. M. Gell, E.H. Jordan, M. Teicholz, B.M. Cetegen, N.P. Padture, L. Xie, D. Chen, X. Ma, and J. Roth, Thermal Barrier Coatings Made by the Solution Precursor Plasma Spray Process, J. Therm. Spray Technol., 2008, 17(1), p 124-135

    Article  Google Scholar 

  9. R. Dom, G. Sivakumar, N.Y. Hebalkar, S.V. Joshi, and P.H. Borse, Deposition of Nanostructured Photocatalytic Zinc Ferrite Films Using Solution Precursor Plasma Spraying, Mater. Res. Bull., 2012, 47(3), p 562-570

    Article  Google Scholar 

  10. D. Chen, E.H. Jordan, M.W. Renfro, and M. Gell, Dy:YAG Phosphor Coating Using the Solution Precursor Plasma Spray Process, J. Am. Ceram. Soc., 2009, 92(1), p 268-271

    Article  Google Scholar 

  11. D. Chen, E. Jordan, M. Gell, and X. Ma, Dense TiO2 Coating Using the Solution Precursor Plasma Spray Process, J. Am. Ceram. Soc., 2008, 91(3), p 865-872

    Article  Google Scholar 

  12. V. Viswanathan, R. Filmalter, S. Patil, S. Deshpande, and S. Seal, High-Temperature Oxidation Behavior of Solution Precursor Plasma Sprayed Nanoceria Coating on Martensitic Steels, J. Am. Ceram. Soc., 2007, 90(3), p 870-877

    Article  Google Scholar 

  13. Y. Huang, L. Song, T. Huang, X. Liu, Y. Xiao, Y. Wu, F. Wu, and Z. Gu, Characterization and Formation Mechanism of Nano-structured Hydroxyapatite Coatings Deposited by the Liquid Precursor Plasma Spraying Process, Biomed. Mater., 2010, 5(054113), p 1-7

    Google Scholar 

  14. A. Aygun, A.L. Vasiliev, N.P. Padture, and X. Ma, Novel Thermal Barrier Coatings that are Resistant to High-Temperature Attack by Glassy Deposits, Acta Mater., 2007, 55, p 6734-6745

    Article  Google Scholar 

  15. Y. Wang and T.W. Coyle, Solution Precursor Plasma Spray of Porous La1−x Sr x MnO3 Perovskite Coatings for SOFC Cathode Application, J. Fuel Cell Sci. Technol., 2011, 8, p 1-5

    Google Scholar 

  16. P. Fauchais, G. Montavon, R.S. Lima, and B.R. Marple, Engineering a New Class of Thermal Spray Nano-based Microstructures from Agglomerated Nanostructured Particles, Suspensions and Solutions: An Invited Review, J. Phys. D Appl. Phys., 2011, 44, p 1-53

    Google Scholar 

  17. G. Bolelli, B. Bonferroni, V. Cannillo, R. Gadow, A. Killinger, L. Lusvarghi, J. Rauch, and N. Stiegler, Wear Behaviour of High Velocity Suspension Flame Sprayed (HVSFS) Al2O3 Coatings Produced Using Micron- and Nano-sized Powder Suspensions, Surf. Coat. Technol., 2010, 204, p 2657-2668

    Article  Google Scholar 

  18. G. Bolelli, V. Cannillo, R. Gadow, A. Killinger, L. Lusvarghi, and J. Rauch, Properties of High Velocity Suspension Flame Sprayed (HVSFS) TiO2 Coatings, Surf. Coat. Technol., 2009, 203, p 1722-1732

    Article  Google Scholar 

  19. R. Vassen, H. Kassner, G. Mauer, and D. Stover, Suspension Plasma Spraying: Process Characteristics and Applications, J. Therm. Spray Technol., 2010, 19, p 219-225

    Article  Google Scholar 

  20. J.O. Berghaus, J.-G. Legoux, C. Moreau, F. Tarasi, and T. Chraska, Mechanical and Thermal Transport Properties of Suspension Thermal-Sprayed Alumina-Zirconia Composite Coatings, J. Therm. Spray Technol., 2008, 17(1), p 91-104

    Article  Google Scholar 

  21. M.L. Nielsen, Ultra Fine Particles, W.E. Kuhn, Ed., Wiley, New York, 1963

  22. R.M. Laine, J.C. Marchal, H.P. Sun, and X.Q. Pan, Nano-α-Al2O3 by Liquid-Feed Flame Spray Pyrolysis, Nat. Mater., 2006, 5, p 710-712

    Article  Google Scholar 

  23. T. Hinklin, B. Toury, C. Gervais, F. Babonneau, J.J. Gislason, R.W. Morton, and R.M. Laine, Liquid-Feed Flame Spray Pyrolysis of Metalloorganic and Inorganic Alumina Sources in the Production of Nanoalumina Powders, Chem. Mater., 2004, 16, p 21-30

    Article  Google Scholar 

  24. T. Bhatia, A. Ozturk, L. Xie, E.H. Jordan, B.M. Cetegen, M. Gell, X. Ma, and N.P. Padture, Mechanisms of Ceramic Coating Deposition in Solution-Precursor Plasma Spray, J. Mater. Res., 2002, 17(9), p 2363-2372

    Article  Google Scholar 

  25. G. Sivakumar, R.O. Dusane, and S.V. Joshi, In Situ Particle Generation and Splat Formation During Solution Precursor Plasma Spraying of Yttria-Stabilized Zirconia Coatings, J. Am. Ceram. Soc., 2011, 94(12), p 4191-4199

    Article  Google Scholar 

  26. G. Sivakumar, R.O. Dusane, and S.V. Joshi, Understanding the Formation of Vertical Cracks in Solution Precursor Plasma Sprayed Yttria-Stabilized-Zirconia Coatings, J. Am. Ceram. Soc., 2014, 97(11), p 3396-3406

    Article  Google Scholar 

  27. T.W. Coyle and Y. Wang, Solution Precursor Plasma Spray (SPPS) of Ni-YSZ SOFC Anode Coatings, Thermal Spray 2007: Global Coating Solutions, B.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and G. Montavon, Ed., ASM International, Materials Park, OH, 2007, p 699-704

    Google Scholar 

  28. P. Fauchais, Understanding Plasma Spraying, J. Phys. D Appl. Phys., 2004, 37, p 86-108

    Article  Google Scholar 

  29. S. Basu and B.M. Cetegen, Modeling of Thermo-Physical Processes in Liquid Ceramic Precursor Droplets Injected into a Plasma Jet, Int. J. Heat Mass Trans., 2007, 50, p 3278-3290

    Article  Google Scholar 

  30. C. Marchand, C. Chazelas, G. Mariaux, and A. Vardelle, Liquid Precursor Plasma Spraying: Modeling the Interactions Between the Transient Plasma Jet and the Droplets, J. Therm. Spray Technol., 2007, 16(5-6), p 705-712

    Article  Google Scholar 

  31. L. Xie, X. Ma, E.H. Jordan, N.P. Padture, D.T. Xiao, and M. Gell, Deposition Of Thermal Barrier Coatings Using the Solution Precursor Plasma Spray Process, J. Mater. Sci., 2004, 39, p 1639-1646

    Article  Google Scholar 

  32. L. Xie, D. Chen, E.H. Jordan, A. Ozturk, F. Wu, X. Ma, B.M. Cetegen, and M. Gell, Formation of Vertical Cracks in Solution-Precursor Plasma-Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 2006, 201, p 1058-1064

    Article  Google Scholar 

  33. A. Killinger, R. Gadow, G. Mauer, A. Guignard, R. Vaßen, and D. Stover, Review of New Developments in Suspension and Solution Precursor Thermal Spray Processes, J. Therm. Spray Technol., 2011, 20(4), p 677-695

    Article  Google Scholar 

  34. A. Moign, A. Vardelle, N.J. Themelis, and J.G. Legoux, Life Cycle Assessment of Using Powder and Liquid Precursors in Plasma Spraying: The Case of Yttria-Stabilized Zirconia, Surf. Coat. Technol., 2010, 205(2), p 668-673

    Article  Google Scholar 

  35. G. Antou, G. Montavon, F. Hlawka, A. Cornet, C. Coddet, and F. Machi, Modification of Thermal Barrier Coating Architecture by In Situ Laser Remelting, J. Eur. Ceram. Soc., 2006, 26, p 3583-3597

    Article  Google Scholar 

  36. G. Mauer, R. Vassen, and D. Stover, Atmospheric Plasma Spraying of Yttria-Stabilized Zirconia Coatings with Specific Porosity, Surf. Coat. Technol., 2009, 204, p 172-179

    Article  Google Scholar 

  37. Z. Zhou, N. Eguchi, H. Shirasawa, and A. Ohmori, Microstructure and Characterization of Zirconia-Yttria Coatings Formed in Laser and Hybrid Spray Process, J. Therm. Spray Technol., 1999, 8(3), p 405-413

    Article  Google Scholar 

  38. A. Ohmori, Z. Zhou, and K. Inoue, Liquid-Mn Sintering of Plasma Sprayed Zirconia-Yttria Coating, Thin Solid Films, 1994, 251, p 141-146

    Article  Google Scholar 

  39. K.A. Khor, Hot Isostatic Pressing Modifications of Pore Size Distribution in Plasma Sprayed Coatings, Mater. Manuf. Proc., 1997, 12(2), p 291-307

    Article  Google Scholar 

  40. Z. Zhou, N. Eguchi, H. Shirasawa, and A. Ohmori, Microstructures and Characterization of Zirconia-Yttria Coatings Formed in Laser and Hybrid Spray Process, J. Therm. Spray Technol., 1999, 8(3), p 405-413

    Article  Google Scholar 

  41. T. Troczynski, Q. Yang, and G. John, Post Deposition Treatment of Zirconia Thermal Barrier Coatings Using Sol-Gel Alumina, J. Therm Spray Technol., 1999, 8(2), p 229-234

    Article  Google Scholar 

  42. J. Jang, H. Takana, Y. Ando, O.P. Solonenko, and H. Nishiyama, Preparation of Carbon-Doped TiO2 nanopowder Synthesized by Droplet Injection of Solution Precursor in a DC-RF Hybrid Plasma Flow System, J. Therm. Spray Technol., 2013, 22(6), p 974-982

    Article  Google Scholar 

  43. B. Martinez, G. Mariaux, A. Vardelle, G. Barykin, and M. Parco, Numerical Investigation of a Hybrid HVOF-Plasma Spraying Process, J. Therm. Spray Technol., 2009, 18(5-6), p 909-920

    Article  Google Scholar 

  44. G. Sivakumar and S.V. Joshi, An Improved Hybrid Methodology for Producing Composite, Multi-layered and Graded Coatings by Plasma Spraying Utilizing Powder and Solution Precursor Feedstock, Indian Patent No. 2965/DEL/2011, 17th Oct 2011

  45. A.J. Skoog, J.A. Murphy, and T.J. Tomlinson, Method for Applying a Plasma Sprayed Coating Using Liquid Injection, US Patent No. US 2006/0222777 A1, 2006

  46. A. Lohia, G. Sivakumar, M. Ramakrishna, and S.V. Joshi, Deposition of Nanocomposite Coatings Employing a Hybrid APS + SPPS Technique, J. Therm. Spray Technol., 2014, 23(7), p 1054-1064

    Article  Google Scholar 

  47. F. Cipri, F. Marra, G. Pulci, J. Tirillò, C. Bartuli, and T. Valente, Plasma Sprayed Composite Coatings Obtained by Liquid Injection of Secondary Phases, Surf. Coat. Technol., 2009, 203, p 2116-2124

    Article  Google Scholar 

  48. P.S. Mohanty, In-Situ Plasma/Laser Hybrid Scheme, US Patent No. US 2010/0320176 A1, 2010

  49. P.S. Mohanty, A.D. Roche, R.K. Guduru, and V. Varadaraajan, Ultrafine Particulate Dispersed High-Temperature Coatings by Hybrid Spray Process, J. Therm. Spray Technol., 2010, 19(1-2), p 484-494

    Article  Google Scholar 

  50. F. Azarmi, T.W. Coyle, and J. Mostaghimi, Optimization of Atmospheric Plasma Spray Process Parameters Using a Design of Experiment for Alloy 625 Coatings, J. Therm. Spray Technol., 2008, 17(1), p 144-155

    Article  Google Scholar 

  51. K. VanEvery, M.J.M. Krane, and R.W. Trice, Parametric Study of Suspension Plasma Spray Processing Parameters on Coating Microstructures Manufactured from Nanoscale Yttria-Stabilized Zirconia, Surf. Coat. Technol., 2012, 206, p 2464-2473

    Article  Google Scholar 

  52. D. Waldbillig and O. Kesler, Effect of Suspension Plasma Spraying Process Parameters on YSZ Coating Microstructure and Permeability, Surf. Coat. Technol., 2011, 205, p 5483-5492

    Article  Google Scholar 

  53. Y. Wang and T.W. Coyle, Optimization of Solution Precursor Plasma Spray Process by Statistical Design of Experiment, J. Therm. Spray Technol., 2007, 17(5-6), p 692-699

    Article  Google Scholar 

  54. L. Xie, X. Ma, A. Ozturk, E.H. Jordan, N.P. Padture, B.M. Cetegen, D.T. Xiao, and M. Gell, Processing Parameter Effects on Solution Precursor Plasma Spray Process Spray Patterns, Surf. Coat. Technol., 2004, 183, p 51-61

    Article  Google Scholar 

  55. S.V. Joshi, G. Sivakumar, T. Raghuveer, and R.O. Dusane, Hybrid Plasma Sprayed Thermal Barrier Coatings Using Powder and Solution Precursor Feedstock, J. Therm. Spray Technol., 2014, 23(4), p 616-624

    Article  Google Scholar 

  56. D. Chen, E.H. Jordan, and M. Gell, Effect of Solution Concentration on Splat Formation and Coating Microstructure Using the Solution Precursor Plasma Spray Process, Surf. Coat. Technol., 2008, 202, p 2132-2138

    Article  Google Scholar 

  57. S. Sampath, X.Y. Jiang, J. Matejicek, A. Vardelle, and A.C. Leger, Substrate Temperature Effects on Splat Formation, Microstructure Development and Properties of Plasma Sprayed Coatings Part I: Case Study for Partially Stabilized Zirconia, Mater. Sci. Eng. A, 1999, 272, p 181-188

    Article  Google Scholar 

  58. M. Tamura, M. Takahashi, J. Ishii, K. Suzuki, M. Sato, and K. Shimomura, Multilayered Thermal Barrier Coating for Land-Based Gas Turbines, J. Therm. Spray Technol., 1999, 8(1), p 68-72

    Article  Google Scholar 

  59. H. Dai, X. Zhong, J. Li, Y. Zhang, J. Meng, and X. Cao, Thermal Stability of Double-Ceramic-Layer Thermal Barrier Coatings with Various Coating Thickness, Mater. Sci. Eng. A, 2006, 433, p 1-7

    Article  Google Scholar 

  60. Q. Yu, A. Rauf, N. Wang, and C. Zhou, Thermal Properties of Plasma-Sprayed Thermal Barrier Coating with Bimodal Structure, Ceram. Int., 2011, 37, p 1093-1099

    Article  Google Scholar 

  61. G. Skandan, R. Yao, B. Kear, Y. Qiao, L. Liu, and T. Fischer, Multimodal Powders: A New Class of Feedstock Material for Thermal Spraying of Hard Coatings, Scripta Mater., 2001, 44(8-9), p 1699-1702

    Article  Google Scholar 

  62. J.H. Ouyang and S. Sasaki, Microstructure and Tribological Characteristics of ZrO2-Y2O3 Ceramic Coatings Deposited by Laser-Assisted Plasma Hybrid Spraying, Tribol. Int., 2002, 35, p 255-264

    Article  Google Scholar 

  63. A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, and F.S. Petit, Mechanisms Controlling the Durability of Thermal Barrier Coatings, Prog. Mater. Sci., 2001, 46, p 505-553

    Article  Google Scholar 

  64. R.S. Lima and B.R. Marple, Nanostructured YSZ Thermal Barrier Coatings Engineered to Counteract Sintering Effects, Mater. Sci. Eng. A, 2008, 485, p 182-193

    Article  Google Scholar 

  65. R.S. Lima, A. Kucuk, and C.C. Berndt, Bimodal Distribution of Mechanical Properties on Plasma Sprayed Nanostructured Partially Stabilized Zirconia, Mater. Sci. Eng. A, 2002, 327, p 224-232

    Article  Google Scholar 

  66. C. Zhou, N. Wang, and H. Xu, Comparison of Thermal Cycling Behavior of Plasma-Sprayed Nanostructured and Traditional Thermal Barrier Coatings, Mater. Sci. Eng. A., 2007, 452-453, p 569-574

    Article  Google Scholar 

  67. R.G. Wellman and J.R. Nicholls, A Review of the Erosion of Thermal Barrier Coatings, J. Phys. D Appl. Phys., 2007, 40(16), p 293-305

    Article  Google Scholar 

  68. C.-J. Li, G.-J. Yang, and A. Ohmori, Relationship Between Particle Erosion and Lamellar Microstructure for Plasma-Sprayed Alumina Coatings, Wear, 2006, 260(2), p 1166-1172

    Article  Google Scholar 

  69. A.G. Davis, D.H. Boone, and A.V. Levy, Erosion of Ceramic Thermal Barrier Coatings, Wear, 1986, 110, p 101-116

    Article  Google Scholar 

  70. G.K. Beshish, C.W. Florey, F.J. Worzala, and W.J. Lenling, Fracture Toughness of Thermal Spray Ceramic Coatings Determined by the Indentation Technique, J. Therm. Spray Technol., 1993, 2(1), p 35-38

    Article  Google Scholar 

  71. B. Hwang, S. Lee, and J. Ahn, Correlation of Microstructure and Wear Resistance of Molybdenum Blend Coatings Fabricated by Atmospheric Plasma Spraying, Mater. Sci. Eng. A., 2004, 366, p 152-163

    Article  Google Scholar 

  72. N. Dejang, A. Limpichaipanit, A. Watcharapasorn, S. Wirojanupatump, P. Niranatlumpong, and S. Jiansirisomboon, Fabrication and Properties of Plasma-Sprayed Al2O3/ZrO2 Composite Coatings, J. Therm. Spray Technol., 2011, 20(6), p 1259-1268

    Article  Google Scholar 

  73. ASTM G99-05 (2010), Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus, ASTM International, West Conshohocken, PA, 2010, www.astm.org

  74. A. Hirata, T. Fujita, Y.R. Wen, J.H. Schneibel, C.T. Liu, and M.W. Chen, Atomic Structure of Nanoclusters in Oxide-Dispersion-Strengthened Steels, Nat. Mater., 2011, 10, p 922-926

    Article  Google Scholar 

  75. W.W. Lee, D.B. Lee, M.H. Kim, and S.C. Ur, High Temperature Oxidation of an Oxide-Dispersion Strengthened NiAl, Intermetallics, 1999, 7, p 1361-1366

    Article  Google Scholar 

  76. C. Suryanarayana, Mechanical Alloying and Milling, Prog. Mater. Sci., 2001, 46, p 1-184

    Article  Google Scholar 

  77. V. Rajković, O. Erić, D. Božić, M. Mitkov, and E. Romhanji, Characterization of Dispersion Strengthened Copper with 3 wt% Al2O3 by Mechanical Alloying, Sci. Sinter., 2004, 36, p 205-211

    Article  Google Scholar 

  78. X.Q. Cao, R. Vassen, and D. Stoever, Ceramic Materials for Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2004, 24, p 1-10

    Article  Google Scholar 

  79. C.G. Levi, Emerging Materials and Processes for Thermal Barrier Systems, Curr. Opin. Solid State Mater. Sci., 2004, 8, p 77-91

    Article  Google Scholar 

  80. R. Vaßen, F. Traeger, and D. Stöver, New Thermal Barrier Coatings Based on Pyrochlore/YSZ Double-Layer Systems, Int. J. Appl. Ceram. Technol., 2004, 1(4), p 351-361

    Article  Google Scholar 

  81. X.Q. Cao, R. Vassen, F. Tietz, and D. Stoever, New Double-Ceramic-Layer Thermal Barrier Coatings Based on Zirconia-Rare Earth Composite Oxides, J. Eur. Ceram. Soc., 2006, 26, p 247-251

    Article  Google Scholar 

  82. S. Mantry, A. Mandal, D.K. Mishra, B.B. Jha, B.K. Mishra, and M. Chakraborty, Microstructure and Thermal Characterization of Plasma-Sprayed Nanostructured La2Ce2O7-Doped YSZ Coatings, J. Therm. Spray Technol., 2014, 23(7), p 1073-1080

    Article  Google Scholar 

  83. D.R. Clarke and S.R. Phillpot, Thermal Barrier Coating Materials, Mater. Today, 2005, 8, p 22-29

    Article  Google Scholar 

  84. J.M. Drexler, C.-H. Chen, A.D. Gledhill, K. Shinoda, S. Sampath, and N.P. Padture, Plasma Sprayed Gadolinium Zirconate Thermal Barrier Coatings that are Resistant to Damage by Molten Ca-Mg-Al-Silicate Glass, Surf. Coat. Technol., 2012, 206, p 3911-3916

    Article  Google Scholar 

  85. http://www.hcstarck.com/en/products/amperitreg_thermal_spray_powders.html

  86. http://www.oerlikon.com/metco/en/products-services/coating-materials/coating-materials-thermal-spray/

  87. http://www.praxairsurfacetechnologies.com/na/us/pst/pst.nsf/AllContent/085C6CF7641FE446852576A50058300A?OpenDocument&URLMenuBranch=1A505E2CA9ABC962852576A5007894D5

  88. X.Q. Ma, S.H. Ge, Y.D. Zhang, J. Roth, and T.D. Xiao, Solution Plasma Spray Synthesis of NiZnFe2O4 Magnetic Nanocomposite Thick Films, International Thermal Spray Conference 2004, ASM International, Materials Park, OH, 2004

  89. E. Garcia, Z.B. Zhang, T.W. Coyle, S.E. Hao, and S.L. Mu, Liquid Precursors Plasma Spraying of TiO2 and Ce-Doped Ba(Zr0.2Ti0.8)O3 Coatings, Thermal Spray 2007: Global Coating Solutions, B.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and G. Montavon, Ed., ASM International, Materials Park, OH, 2007, p 650-654

    Google Scholar 

  90. W. Duarte, S. Rossignol, and M. Vardelle, La2Zr2O7 (LZ) Coatings by Liquid Feedstock Plasma Spraying: The Role of Precursors, J. Therm. Spray Technol., 2014, 23(8), p 1425-1435

    Article  Google Scholar 

  91. B.G. Ravi, S. Sampath, R. Gambino, P.S. Devi, and J.B. Parise, Plasma Spray Synthesis from Precursors: Progress, Issues and Considerations, J. Therm. Spray Technol., 2006, 15(4), p 701-707

    Article  Google Scholar 

  92. P. Michaux, G. Montavon, A. Grimaud, A. Denoirjean, and P. Fauchais, Elaboration of porous NiO/8YSZ layers by several SPS and SPPS routes, J. Therm. Spray Technol., 2010, 19(1-2), p 317-327

    Article  Google Scholar 

  93. P.S. Mohanty, N.A. Moroz, S.B. Chikkannanavar, and R.K. Guduru, Direct Thermal Spray Synthesis of Li Ion Battery Components, US Patent No. US2010/0323118A1, 2010

  94. R. Tummala, R.K. Guduru, and P.S. Mohanty, Solution Precursor Plasma Deposition of Nanostructured CdS Thin Films, Mater. Res. Bull., 2012, 47, p 700-707

    Article  Google Scholar 

  95. V. Varadaraajan, B.C. Satishkumar, J. Nanda, and P. Mohanty, Direct Synthesis of Nanostructured V2O5 Films Using Solution Plasma Spray Approach for Lithium Battery Applications, J. Power Sources, 2011, 196, p 10704-10711

    Article  Google Scholar 

  96. G. Sivakumar, R.O. Dusane, and S.V. Joshi, A Novel Approach to Process Phase Pure α-Al2O3 Coatings by Solution Precursor Plasma Spraying, J. Eur. Ceram. Soc., 2013, 33, p 2823-2829

    Article  Google Scholar 

  97. R. Tummala, R.K. Guduru, and P.S. Mohanty, Solution Precursor Plasma Deposition of Nanostructured ZnO Coatings, Mater. Res. Bull., 2011, 46, p 1276-1282

    Article  Google Scholar 

  98. R. Tummala, R.K. Guduru, and P.S. Mohanty, Binder Free, Porous and Nanostructured Co3O4 Anode for Li-ion Batteries from Solution Precursor Plasma Deposition, J. Power Sources, 2012, 199, p 270-277

    Article  Google Scholar 

  99. N. Pentyala, R.K. Guduru, E.M. Shnerpunas, and P.S. Mohanty, Synthesis of Ultrafine Single Crystals and Nanostructured Coatings of Indium Oxide from Solution Precursor, Appl. Surf. Sci., 2011, 257(15), p 6850-6857

    Article  Google Scholar 

  100. M. Golozar, K. Chien, and T.W. Coyle, Orthorhombic α-MoO3 Coatings with Lath-Shaped Morphology Developed by SPPS: Applications to Super-Capacitors, J. Therm. Spray Technol., 2012, 21(3-4), p 469-479

    Article  Google Scholar 

  101. N. Sanpo, C.C. Berndt, A.S.M. Ang, and J. Wang, Effect of the Chelating Agent Contents on the Topography, Composition and Phase of SPPS-Deposited Cobalt Ferrite Splats, Surf. Coat. Technol., 2013, 232, p 247-253

    Article  Google Scholar 

  102. P.B. Nehe, G. Sivakumar, and S. Kumar, Solution Precursor Plasma Spray (SPPS) Technique of Catalyst Coating for Hydrogen Production in a Single Channel with Cavities Plate Type Methanol Based Microreformer, Chem. Eng. J., 2015, doi:10.1016/j.cej.2015.04.121

    Google Scholar 

  103. N. Espallargas and S. Armada, A New Type of Self-Lubricated Thermal Spray Coatings: Liquid Lubricants Embedded in a Metal Matrix, J. Therm. Spray Technol., 2014, doi:10.1007/s11666-014-0152-8

    Google Scholar 

  104. S.R. White, N.R. Sottos, P.H. Geubelle, J.S. Moore, M.R. Kessler, S.R. Sriram, E.N. Brown, and S. Viswanathan, Autonomic Healing of Polymer Composites, Nature, 2001, 409, p 794-797

    Article  Google Scholar 

  105. S. Armada, R. Schmid, S. Equey, I. Fagoaga, and N. Espallargas, Liquid-Solid Self-Lubricated Coatings, J. Therm. Spray Technol., 2013, 22(1), p 10-17

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Director, ARCI for his kind permission to publish this work. The support extended by Mr. A. Sathyanarayana, Mr. G.V.R. Reddy, Mr. K. Ramesh Reddy, and Ms. K. Himabindu during experimental studies and characterization are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Joshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, S.V., Sivakumar, G. Hybrid Processing with Powders and Solutions: A Novel Approach to Deposit Composite Coatings. J Therm Spray Tech 24, 1166–1186 (2015). https://doi.org/10.1007/s11666-015-0262-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-015-0262-y

Keywords

Navigation