Advertisement

Journal of Thermal Spray Technology

, Volume 24, Issue 1–2, pp 24–29 | Cite as

Tailoring the Spray Conditions for Suspension Plasma Spraying

  • A. Joulia
  • W. DuarteEmail author
  • S. Goutier
  • M. Vardelle
  • A. Vardelle
  • S. Rossignol
Peer Reviewed

Abstract

The plasma spray process using suspensions as liquid feedstock allows the deposition of finely structured coatings with improved properties compared to that of coatings deposited by the conventional plasma spray techniques. The evaporation of the solvent, acceleration, heating, and melting of the fine solid particles within the plasma jet take place in a shorter time, as the substrate is located closer to the plasma torch when a mono-cathode mono-anode plasma torch is used, while the liquid material processing globally consumes more energy than a powder material. Therefore, achieving a coating with the expected properties requires a broad understanding of the process. In this study, a large range of plasma spray conditions have been used to achieve yttria-stabilized zirconia coatings by suspension plasma spraying. The properties of the plasma jet (velocity, enthalpy, and stability) as well as those of droplets (trajectories, number, and size) and particles (velocity) were measured and correlated to the coating microstructure. The operating conditions necessary for obtaining disk-shape splats and achieving homogeneous coatings are described including the plasma jet properties and substrate parameters.

Keywords

particle velocity plasma velocity suspension plasma spaying voltage fluctuations 

Notes

Acknowledgments

The authors would like to thank the DGA (French Ministry of Defence) and the National R&T program of CNES (French Space Agency) for their financial support.

References

  1. 1.
    P. Fauchais, A. Joulia, S. Goutier, C. Chazelas, M. Vardelle, A. Vardelle, and S. Rossignol, Suspension and Solution Plasma Spraying, J. Phys. D: Appl. Phys., 2013, 46, p 224015CrossRefGoogle Scholar
  2. 2.
    G. Bertolissi, C. Chazelas, G. Bolelli, L. Lusvarghi, M. Vardelle, and A. Vardelle, Engineering the Microstructure of Solution Precursor Plasma-Sprayed Coatings, J. Therm. Spray. Technol., 2012, 21, p 1148-1162CrossRefGoogle Scholar
  3. 3.
    P. Fauchais, R. Etchart-Salas, V. Rat, J.F. Coudert, N. Caron, and K. Wittmann-Ténèze, Parameters Controlling Liquid Plasma Spraying: Solutions, Sols, or Suspensions, J. Therm. Spray Technol., 2008, 7(1), p 31-59CrossRefGoogle Scholar
  4. 4.
    A. Guignard, G. Mauer, R. Vassen, and D. Stöver, Deposition and Characteristics of Submicrometer Structured Thermal Barrier Coatings by Suspension Plasma Spraying, J. Therm. Spray Technol., 2012, 21(3-4), p 416-424CrossRefGoogle Scholar
  5. 5.
    R. Vassen, H. Kassner, G. Mauer, and D. Stöver, Suspension Plasma Spraying: Process Characteristics and Applications, J. Therm. Spray Technol., 2010, 19, p 219-225CrossRefGoogle Scholar
  6. 6.
    A. Killinger, R. Gadow, G. Mauer, A. Guignard, and R. Vassen, Review of New Developments in Suspension and Solution Precursor Thermal Spray, J. Therm. Spray Technol., 2011, 20, p 677-695CrossRefGoogle Scholar
  7. 7.
    S. Sampath, U. Schulz, M.O. Jarligo, and S. Kuroda, Processing Science of Advanced Thermal-Barrier Systems, MRS Bull., 2012, 37, p 903-910CrossRefGoogle Scholar
  8. 8.
    K. VanEvery, M.J.M. Krane, R.W. Trice, H. Wang, W. Porter, W. Besser, D. Sordelet, I. Llavsky, and J. Almer, Column Formation in Suspension Plasma Sprayed Coating and Resultant Thermal Properties, J. Therm. Spray Technol., 2011, 20, p 817-828CrossRefGoogle Scholar
  9. 9.
    Z. Tang, H. Kim, I. Yaroslavski, I. Masindo, Z. Celler, and D. Ellsworth, Novel Thermal Barrier Coatings Produced by Axial Suspension Plasma Spray, Thermal Spray 2011: Proceedings of the International Thermal Spray Conference (DVS-ASM), 2011, p 571-575Google Scholar
  10. 10.
    H. Kassner, R. Siegert, D. Hathiramani, R. Vassen, and D. Stöver, Application of Suspension Plasma Spraying (SPS) for Manufacture of Ceramic Coatings, J. Therm. Spray Technol., 2008, 17, p 115-123CrossRefGoogle Scholar
  11. 11.
    E.R.G. Eckert, E. Pfender, and S.A. Wutzke, Study of Electric Arc Behaviour with Superimposed Flow, AIAA J., 1967, 5(4), p 707-713CrossRefGoogle Scholar
  12. 12.
    A. Joulia, G. Bolelli, E. Gualtierie, L. Lusvarghi, S. Valerif, M. Vardelle, S. Rossignol, and A. Vardelle, Comparing the Deposition Mechanisms in Suspension Plasma Spray and Solution Precursor Plasma Spray Deposition of Yttria Stabilized Zirconia, J. Eur. Ceram. Soc., 2014, 34(15), p 3925-3940CrossRefGoogle Scholar
  13. 13.
    C. Marchand, C. Chazelas, G. Mariaux, and A. Vardelle, Liquid Precursor Plasma Spraying: Observation of Liquid Feedstock Break-up, ITSC 2008, June 02-04 (Maastricht, The Netherlands)Google Scholar
  14. 14.
    M.P. Planche, J.F. Coudert, and P. Fauchais, Velocity Measurements for Arc Jets Produced by a DC Plasma Torch, Plasma Chem. Plasma Proc., 1998, 18(2), p 263-283CrossRefGoogle Scholar
  15. 15.
    S. Goutier, J. Varin, W. Duarte, A. Joulia, and A. Vardelle, Laser Diagnostic Techniques for Suspension and Solution Plasma Spraying, Proceedings of ITSC 2014, May 21-24 (Barcelona), DVS-Berichte, Vol 302, p 634-640Google Scholar

Copyright information

© ASM International 2014

Authors and Affiliations

  • A. Joulia
    • 1
    • 2
  • W. Duarte
    • 1
    • 2
    Email author
  • S. Goutier
    • 1
  • M. Vardelle
    • 1
  • A. Vardelle
    • 1
  • S. Rossignol
    • 1
  1. 1.SPCTS - UMR CNRSLimoges CedexFrance
  2. 2.CNES (French Space Agency)ParisFrance

Personalised recommendations