Journal of Thermal Spray Technology

, Volume 23, Issue 8, pp 1350–1361 | Cite as

Sliding Wear Response of Nanostructured YSZ Suspension Plasma-Sprayed Coating

  • S. KossmanEmail author
  • D. Chicot
  • X. Decoopman
  • A. Iost
  • A. van Gorp
  • E. Meillot
  • E. S. Puchi-Cabrera
  • Y. Y. Santana
  • M. H. Staia
Peer Reviewed


Nanostructured yttria-stabilized zirconia coatings for applications in high-temperature environments can be deposited by suspension plasma spraying (SPS) techniques. The present research has been conducted in order to study the sliding wear response of a SPS ZrO2–8% mol. Y2O3 coating (75 μm in thickness) deposited onto a Haynes 230 substrate, using pin-on-disc tests. Some of the coated samples were subsequently heat-treated for 1 h at 300 and 600 °C. Samples characterization prior and after the wear tests was carried out by SEM, EDS, XRD and optical profilometry techniques. Instrumented indentation was employed to determine elastic modulus and hardness. The results have shown that the as-sprayed and heat-treated samples experienced severe wear (10−13 m3/Nm) and the worst wear performance corresponded to the sample heat treated at 600 °C. Such a behavior could be related to both the structural changes that took place during heat treatment and the nature and level of the residual stresses in the coatings. In general, the morphologies of the wear tracks observed by SEM have shown a smoothing of the surface, brittle fracture, smearing and grain pull-out.


heat treatment nanoindentation nanostructured coating suspension plasma spray wear yttria-stabilized zirconia 



The present investigation has been carried out with the support of the Scientific and Humanistic Development Council of the Universidad Central de Venezuela (CDCH-UCV) through the Projects No AIB-08-85-39-2012 and PG-08-8645-2013. Ms. S. Kossman gratefully acknowledges the financial support through the scholarship “Stages Master “received from University of Lille 1 to carry out part of the experiments in LML UST Lille and Arts et Métiers ParisTech, MSMP, Lille, France. Professor Puchi acknowledges the financial support of the Conseil Régional Nord-Pas de Calais, France through the International Chair Program 2011.


  1. 1.
    J.R. Davis, Protective Coatings for Superalloys. ASM Specially Handbook, Heat-Resistance Materials. ASM International Materials Park, OH. 1997, p 335-344Google Scholar
  2. 2.
    O. Tingaud, R. Etchart-Salas, V. Rat, J.F. Coudert, H. Ageorges, A. Grimaud, A. Denoirjean, P. Fauchais, G. Montavon, N. Caron and S. Alexandre, Suspension Plasma Spraying of Zirconia Coatings: Process and Coating Structure, 18th International Symposium on Plasma Chemistry, Japan, 2007Google Scholar
  3. 3.
    G. Darut, F. Ben-Ettouil, A. Denoirjean, G. Montavon, H. Ageorges, and P. Fauchais, Dry Sliding Behavior of Sub-Micrometer-Sized Suspension Plasma Sprayed Ceramic Oxide Coatings, J. Therm. Spray Technol., 2010, 19(1–2), p 275-285CrossRefGoogle Scholar
  4. 4.
    S.C. Tjong and H. Chen, Nanocrystalline Materials and Coatings, Mater. Sci. Eng. R, 2004, 45(1-2), p 1-88CrossRefGoogle Scholar
  5. 5.
    Y. Zeng, S.W. Lee, L. Gao, and C.X. Ding, Atmospheric Plasma Sprayed Coatings of Nanostructured Zirconia, J. Eur. Ceram. Soc., 2002, 22(3), p 347-351CrossRefGoogle Scholar
  6. 6.
    L. Pawlowski, Finely Grained Nanometric and Submicrometric Coatings by Thermal Spraying, Surf. Coat. Technol., 2008, 202(18), p 4318-4328CrossRefGoogle Scholar
  7. 7.
    M. Gell, Application Opportunities for Nonostructured Materials and Coatings, Mater. Sci. Eng., 1995, 204(1), p 246-251CrossRefGoogle Scholar
  8. 8.
    P. Fauchais and A. Vardelle, Solution and Suspension Plasma Spraying of Nanostructured Coatings. In H. Salimi Advanced Thermal Spray Applications, Ed. InTech, 2012, Chapter 7Google Scholar
  9. 9.
    E. Brousse, G. Montavon, P. Fauchais, A. Denoirjean, V. Rat, J.-F.Coudert, and H. Ageorges, Thin and Dense Yttria-Partially Stabilized Zirconia Electrolytes for IT-SOFC Manufactured by Suspension Plasma Spraying, Thermal Spray 2008: Crossing Borders (DVS-ASM), 2008, p 535-540Google Scholar
  10. 10.
    O. Tingaud, A. Grimaud, A. Denoirjean, G. Montavon, V. Rat, J.-F.Coudert, P. Fauchais, and T. Chartier, Suspension Plasma-Sprayed Alumina Coating Structures: Operating Parameters vs. Coating Architecture, Thermal Spray 2008: Crossing Borders (DVS-ASM), 2008, p 311-316Google Scholar
  11. 11.
    L. Pawlowski, Suspension and Solution Thermal Spraying Coatings, Surf. Coat. Technol., 2009, 203, p 2807-2829CrossRefGoogle Scholar
  12. 12.
    A. Bacciochini, G. Montavon, J. Llavsky, A. Denoirjean, and P. Fauchais, Porous Architecture of SPS Thick YSZ Coatings at the Nanometer Scale (~50 nm), J. Therm. Spray Technol., 2010, 19(1–2), p 198-206CrossRefGoogle Scholar
  13. 13.
    R. Vert, P. Carles, E. Meillot, E. Laborde, G. Mariaux, and A. Vardelle, Adhesion of Ceramic Coating on Thin and Smooth Metal Substrate: A Novel Approach with a Nanostructured Ceramic Interlayer, J. Therm. Spray Technol., 2012, 21(6), p 1128-1134CrossRefGoogle Scholar
  14. 14.
    G. Darut, H. Ageorges, A. Denoirjean, and P. Fauchais, Tribological Performances of YSZ Composite Coatings Manufactured by Suspension Plasma Spraying, Surf. Coat. Technol., 2013, 217, p 172-180CrossRefGoogle Scholar
  15. 15.
    C. Piconi and G. Maccauro, Zirconia as a Ceramic Biomaterial, Biomaterials, 1999, 20, p 1-25CrossRefGoogle Scholar
  16. 16.
    R. Hannink, P. Kelly, and B. Muddle, Transformation Toughening in Zirconia-Containing Ceramics, J. Am. Ceram. Soc., 2000, 83(3), p 461-487CrossRefGoogle Scholar
  17. 17.
    S. Tao, B. Llang, C. Ding, H. Llao, and C. Coddet, Wear Characteristics of Plasma-Sprayed Nanostructured Yttria Partially Stabilized Zirconia Coatings, J. Therm. Spray Technol., 2004, 14(4), p 518-523CrossRefGoogle Scholar
  18. 18.
    H. Ahn, J. Kim, and D. Lim, Tribological Behavior of Plasma Sprayed Zirconia Coatings, Wear, 1997, 203(204), p 77-87CrossRefGoogle Scholar
  19. 19.
    T.E. Fischer, M.P. Anderson, S. Jahanmir, and R. Salher, Friction and Wear of Tough and Brittle Zirconia in Nitrogen, Air, Water, and Hexadecadene Containing Stearic Acid, Wear, 1988, 124, p 133-148CrossRefGoogle Scholar
  20. 20.
    J.H. Ouyang and S. Sasaki, Unlubricated Friction and Wear Behavior of Low-Pressure Plasma-Sprayed ZrO2 Coating at Elevated Temperatures, Ceram. Int., 2001, 27, p 251-260CrossRefGoogle Scholar
  21. 21.
    A. Erdemir, A Review of the lubrication of ceramics with thin solid films. Friction and Wear of Ceramics, S. Jahanmir, Ed., Marcel Dekker, 1994, p 119-161Google Scholar
  22. 22.
    J. Ilavsky and J.K. Stalick, Phase Composition and Its Changes During Annealing of Plasma-Sprayed YSZ, Surf. Coat. Technol., 2000, 127, p 120-129CrossRefGoogle Scholar
  23. 23.
    W.C. Oliver and G.M. Pharr, Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(6), p 1564-1580CrossRefGoogle Scholar
  24. 24.
    W.C. Oliver and G.M. Pharr, Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, J. Mater. Res., 2004, 19(1), p 3-20CrossRefGoogle Scholar
  25. 25.
    K. VanEvery, M. Krane, R. Trice, H. Wang, W. Porter, M. Besser, D. Sordelet, J. Ilavsky, and J. Almer, Column Formation in Suspension Plasma-Sprayed Coatings and Resultant Thermal Properties, J. Therm. Spray Technol., 2011, 20, p 817-828CrossRefGoogle Scholar
  26. 26.
    R. Vert, Elaboration Par Projection Plasma d’un revêtement céramique sur un substrat métallique mince et de faible rugosité : Usage d’une sous-couche d’adhérence nanostructurée. PhD thesis, Université de Limoges, 2011, (in French)Google Scholar
  27. 27.
    D.N. Argyriou and C.J. Howard, Reinvestigation of Yttria-Tetragonal Zirconia Polycrystal (Y-TZP) by Neutron Powder Diffraction—A Cautionary Tale, J. Appl. Crystallogr., 1995, 28, p 206-208CrossRefGoogle Scholar
  28. 28.
    R. Srinivasan, R. De Angelis, G. Ice, and B. Davis, Identification of Tetragonal and Cubic Structures of Zirconia Using Synchrotron X-Radiation Source, J. Mater. Res., 1991, 6, p 1287-1292CrossRefGoogle Scholar
  29. 29.
    J. Swab, Role of Oxide Additives in Stabilizing Zirconia for Coating Applications, Army Research Laboratory, 2001, ARL-TR-2591Google Scholar
  30. 30.
    X. Xing, Thesis: Computational modeling study of yttria stabilized zirconia. PhD thesis. University College of London, 2010Google Scholar
  31. 31.
    S. Giraud and J. Canel, Young’s Modulus of Some SOFCs Materials as a Function of Temperature, J. Eur. Ceram. Soc., 2008, 28, p 77-83CrossRefGoogle Scholar
  32. 32.
    R. Vert, D. Chicot, C. Dublanche-Tixier, E. Meillot, A. Vardelle, and G. Mariaux, Adhesion of YSZ Suspension Plasma-Sprayed Coating on Smooth and Thin Substrates, Surf. Coat. Technol., 2010, 205, p 999-1003CrossRefGoogle Scholar
  33. 33.
    R.S. Lima, A. Kucuk, and C.C. Berndt, Bimodal Distribution of Mechanical Properties on Plasma Sprayed Nanostructured Partially Stabilized Zirconia, Mater. Sci. Eng., 2002, A327, p 224-232CrossRefGoogle Scholar
  34. 34.
    P. Carpio, E. Rayón, L. Pawłowski, A. Cattini, R. Benavente, E. Bannier, M.D. Salvador, and E. Sánchez, Microstructure and Indentation Mechanical Properties of YSZ Nanostructured Coatings Obtained by Suspension Plasma Spraying, Surf. Coat. Technol., 2013, 220, p 237-243CrossRefGoogle Scholar
  35. 35.
    C.S. Ramachandran, V. Balasubramanian, P.V. Ananthapadmanabhan, and V. Viswabaskaran, Understanding the Dry Sliding Wear Behaviour of Atmospheric Plasma-Sprayed Rare Earth Oxide Coatings, Mater. Des., 2012, 39, p 234-252CrossRefGoogle Scholar
  36. 36.
    S. Jahanmir, Advanced Ceramics in Tribological Applications. Friction and Wear of Ceramics, S. Jahanmir, Ed., Marcel Dekker, 1994, p 3-12Google Scholar
  37. 37.
    S.T. Aruna, N. Balaji, and K.S. Rajam, Phase Transformation and Wear Studies of Plasma Sprayed Yttria Stabilized Zirconia Coatings Containing Various mol% of Yttria, Mater. Charact., 2011, 62, p 697-705CrossRefGoogle Scholar
  38. 38.
    S.M. Wiederhorn, S.W. Freiman, E.R. Fuller, and C.J. Simmons, Effect of Water and Other Dielectrics on Crack Growth, J. Mater. Sci., 1982, 17, p 3460-3478CrossRefGoogle Scholar
  39. 39.
    T.A. Michalske and B.C. Bunker, Slow Fracture Model Based on Strained Silicate Structures, J. Appl. Phys., 1984, 56, p 2686CrossRefGoogle Scholar
  40. 40.
    R.K. Iler, The Chemistry of Silica, Wiley, New York, 1979, p 896Google Scholar
  41. 41.
    S. Nazarpour, C. López-Gándaraa, C. Zamania, J.M. Fernández-Sanjuán, F. Ramos, and A. Cirera, Phase Transformation Studies on YSZ Doped with Alumina. Part 2: Yttria Segregation, J. Alloys Compd., 2010, 505, p 534-554CrossRefGoogle Scholar
  42. 42.
    G. Witz, V. Shklover, W. Steurer, S. Bachegowda, and H. Bossmann, Phase Evolution in Yttria-Stabilized Zirconia Thermal Barrier Coatings Studied by Rietveld Refinement of X-Ray Powder Diffraction Patterns, J. Am. Ceram. Soc., 2007, 90(9), p 2935-2940CrossRefGoogle Scholar
  43. 43.
    B.D. Cullity, Elements of X-Ray Diffraction, 2nd ed., Addison-Wesley, Boston, 1978Google Scholar
  44. 44.
    S. Kuroda, T. Dendo, and S. Kitahara, Quenching Stress in Plasma Sprayed Coatings and Its Correlation with Deposit Microstructure, J. Therm. Spray Technol., 1995, 4(1), p 75-84CrossRefGoogle Scholar
  45. 45.
    A. Macwan. Residual Stresses in Suspension Plasma Sprayed Electrolytes in Metal-Supported Solid Oxide Fuel Cell. Master thesis. Ryerson University, Canada, 2012Google Scholar
  46. 46.
    K. Kato and K. Adachi, Wear Mechanisms. Modern Tribology Handbook Vol. I, B. Bhushan, CRC, 2001, Chapter 7Google Scholar

Copyright information

© ASM International 2014

Authors and Affiliations

  • S. Kossman
    • 1
    • 2
    Email author
  • D. Chicot
    • 2
  • X. Decoopman
    • 2
  • A. Iost
    • 3
  • A. van Gorp
    • 3
  • E. Meillot
    • 4
  • E. S. Puchi-Cabrera
    • 1
    • 2
    • 5
  • Y. Y. Santana
    • 1
  • M. H. Staia
    • 1
    • 3
    • 5
  1. 1.School of Metallurgical Engineering and Materials Science, Faculty of EngineeringUniversidad Central de VenezuelaLos Chaguaramos, CaracasVenezuela
  2. 2.Laboratoire de Mécanique de LilleLML, UMR 8107, UST Lille, IUT A GMPVilleneuve d’AscqFrance
  3. 3.Arts et Métiers ParisTech, MSMPLille CedexFrance
  4. 4.CEA, DAM, Le RipaultMontsFrance
  5. 5.Venezuelan National Academy for Engineering and HabitatPalacio de las AcademiasCaracasVenezuela

Personalised recommendations