Advertisement

Journal of Thermal Spray Technology

, Volume 23, Issue 7, pp 1037–1053 | Cite as

Parameters Influencing the Photocatalytic Activity of Suspension-Sprayed TiO2 Coatings

  • Filofteia-Laura TomaEmail author
  • Lutz-Michael Berger
  • Irina Shakhverdova
  • Beate Leupolt
  • Annegret Potthoff
  • Kathrin Oelschlägel
  • Tobias Meissner
  • José Antonio Ibáñez Gomez
  • Yolanda de Miguel
Peer Reviewed

Abstract

Photocatalytic properties of titania have been studied very intensively for a variety of applications, including air and water purification. In order to clarify the influence of the phase composition and other parameters, thermal spraying with suspensions was applied to produce photocatalytically active titania coatings starting from two commercially available anatase and rutile submicron powders. Aqueous suspensions containing 40% solids by weight were sprayed with an HVOF process using ethylene as the fuel gas. The spray parameters were chosen in order to produce mechanically stable coatings and to preserve a high content of the initial crystalline phases of the powders. The coating microstructures, phase compositions, and surface properties were characterized. The photocatalytic performance was evaluated by degradation of the pink dye Rhodamine B (RB) using two techniques: degradation of an aqueous solution of RB and discoloration of impregnated RB. All the coatings exhibited photocatalytic activity to varying degrees, depending on the phase composition as well as other factors, namely, the coating microstructure, surface morphology, surface hydroxylation, light absorption, and interaction with the pollutant.

Keywords

HVOF nanocomposite structure photocatalysis photocatalytic activity rhodamine B suspension TiO2 

Notes

Acknowledgments

The authors would like to thank B. Wolf and S. Schultz (Fraunhofer IWS) for help with the metallographic preparation and the spectroscopy measurements and Dr. M. Yamada (Toyahashi University of Technology, Toyahashi, Japan) for kind delivery of the ceramic substrates. Part of this work was performed under DVS research project 02.064 “Funktionalisierung von Keramikoberflächen durch thermisch gespritzte Schichten” (“Functionalization of ceramic surfaces by thermal spraying”), AiF No. 17.371 BR, funded via AiF by the Federal Ministry of Economics and Technology within the framework of the program for promotion of “Industrial Joint Research (IGF).” The authors gratefully acknowledge this financial support.

References

  1. 1.
    A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 1972, 238, p 37-38CrossRefGoogle Scholar
  2. 2.
    J.-M. Herrmann, Heterogeneous Photocatalysis: Fundamentals and Applications to the Removal of Various Types of Aqueous Pollutants, Catal. Today, 1999, 53, p 115-129CrossRefGoogle Scholar
  3. 3.
    A. Mills and S. Le Hunte, An Overview of Semiconductor Photocatalysis, J. Photochem. Photobiol. A, 1997, 108, p 1-35CrossRefGoogle Scholar
  4. 4.
    A. Fujishima, T.N. Rao, and D.A. Tryk, Titanium Dioxide Photocatalysis, J. Photochem. Photobiol. C, 2000, 1, p 1-21CrossRefGoogle Scholar
  5. 5.
    K. Hashimoto, H. Irie, and A. Fujishima, TiO2 Photocatalysis: A Historical Overview and Future Prospects, Jpn. J. Appl. Phys., 2005, 44, p 8269-8285CrossRefGoogle Scholar
  6. 6.
    K. Nakata and A. Fujishima, TiO2 Photocatalysis: Design and Applications, J. Photochem. Photobiol. C, 2012, 13, p 169-189CrossRefGoogle Scholar
  7. 7.
    U. Diebold, The Surface Science of Titanium Dioxide, Surf. Sci. Rep., 2003, 48, p 53-229CrossRefGoogle Scholar
  8. 8.
    D.O. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley, C. Richard, A. Catlow, M.J. Powell, R.G. Palgrave, I.P. Parkin, G.W. Watson, T.W. Keal, P. Sherwood, A. Walsh, and A.A. Sokol, Band Alignment of Rutile and Anatase TiO2, Nat. Mater., 2013, 12, p 798-801CrossRefGoogle Scholar
  9. 9.
    D. Reyes-Coronado, G. Rodríguez-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R. de Coss, and G. Oskam, Phase-Pure TiO2 Nanoparticles: Anatase, Brookite and Rutile, Nanotechnology, 2008, 19, p 145605CrossRefGoogle Scholar
  10. 10.
    Y.R. Park and K.J. Kim, Structural and Optical Properties of Rutile and Anatase TiO2 Thin Films: Effects of Co Doping, Thin Solid Films, 2005, 484(1-2), p 34-38CrossRefGoogle Scholar
  11. 11.
    X.-M. Song, J.-M. Wu, and M. Yan, Photocatalytic Degradation of Selected Dyes by Titania Thin Films with Various Nanostructures, Thin Solid Films, 2009, 517, p 4341-4347CrossRefGoogle Scholar
  12. 12.
    S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, Optical Properties of Polycrystalline and Epitaxial Anatase and Rutile TiO2 Thin Films by RF Magnetron Sputtering, Appl. Surf. Sci., 2003, 212-213, p 654-660CrossRefGoogle Scholar
  13. 13.
    D.C. Hurum, A.G. Agrios, and K.A. Gray, Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed Phase TiO2 Using EPR, J. Phys. Chem. B, 2003, 107(19), p 4545-4549CrossRefGoogle Scholar
  14. 14.
    D.C. Hurum, K.A. Gray, T. Rajh, and M.C. Thurnauer, Recombination Pathways in the Degussa P25 formulation of TiO2: Surface Versus Lattice Mechanisms, J. Phys. Chem. B, 2005, 109, p 977-980CrossRefGoogle Scholar
  15. 15.
    G. Li and K.A. Gray, The Solid-Solid Interface: Explaining the High and Unique Photocatalytic Reactivity of TiO2-Based Nanocomposite Materials, Chem. Phys., 2007, 339, p 173-187CrossRefGoogle Scholar
  16. 16.
    L.-M. Berger, Titanium Oxide—New Opportunities for an Established Coating Material, Thermal Spray Solutions: Advances in Technology and Applications, May 10-12, 2004, Osaka, Japan, DVS-Verlag GmbH, Düsseldorf, 2004, on CD-ROMGoogle Scholar
  17. 17.
    G.-J. Yang, C.-J. Li, Y.-Y. Wang, and C.-X. Li, Dominant Microstructural Feature over Photocatalytic Activity of High Velocity Oxy-Fuel Sprayed TiO2 Coating, Surf. Coat. Technol., 2007, 202(1), p 63-68CrossRefGoogle Scholar
  18. 18.
    T. Kanazawa and A. Ohmori, Behavior of TiO2 Coating Formation on PET Plate by Plasma Spraying and Evaluation of Coating’s Photocatalytic Activity, Surf. Coat. Technol., 2005, 197, p 45-50CrossRefGoogle Scholar
  19. 19.
    F.-L. Toma, L.-M. Berger, D. Jacquet, D. Wicky, I. Villaluenga, Y.R. de Miguel, and J.S. Lindeløv, Comparative Study on the Photocatalytic Behaviour of Titanium Oxide Thermal Sprayed Coatings from Powders and Suspensions, Surf. Coat. Technol., 2009, 203, p 2150-2156CrossRefGoogle Scholar
  20. 20.
    P. Ctibor, V. Stengl, I. Pís, T. Zahoranová, and V. Nehasil, Plasma Sprayed TiO2: The Influence of Power of an Electric Supply on Relations among Stoichiometry, Surface State and Photocatalytic Decomposition of Acetone, Ceram. Int., 2012, 38, p 3453-3458CrossRefGoogle Scholar
  21. 21.
    P. Ctibor, Z. Pala, J. Sedlacek, V. Stengl, T. Zahoranova, and V. Nehasil, Titanium Dioxide Coatings Sprayed by a Water-Stabilized Plasma Gun (WSP) with Argon and Nitrogen as the Powder Feeding Gas: Differences in Structural, Mechanical and Photocatalytic Behavior, J. Therm. Spray Technol., 2012, 21(3-4), p 425-434CrossRefGoogle Scholar
  22. 22.
    A. Ohmori, K. Nakade, and Y. Yamamoto, Photocatalytic Decomposition of Ammonia by Thermal Sprayed TiO2 Coatings, Thermal Spray 2003: Advancing the Science & Applying the Technology, Proceedings of the International Thermal Spray Conference & Exhibition ITSC 2003, C. Moreau and B. Marple, Eds., ASM International, Materials Park, Ohio, 2003, p 189-193Google Scholar
  23. 23.
    F.L. Toma, G. Bertrand, S. OkChwa, D. Klein, H. Liao, C. Meunier, and C. Coddet, Microstructure and Photocatalytic Properties of Nanostructured TiO2 and TiO2-Al Coatings Elaborated by HVOF Spraying for the NOx Removal, Mater. Sci. Eng. A, 2006, 417, p 56-62CrossRefGoogle Scholar
  24. 24.
    F.-L. Toma, G. Bertrand, S.O. Chwa, C. Meunier, D. Klein, and C. Coddet, Comparative Study on the Photocatalytic Decomposition of Nitrogen Oxides using TiO2 Coatings Prepared by Conventional Plasma Spraying and Suspension Plasma Spraying, Surf. Coat. Technol., 2006, 200, p 5855-5862CrossRefGoogle Scholar
  25. 25.
    F.L. Toma, D. Sokolov, G. Bertrand, D. Klein, C. Coddet, and C. Meunier, Comparison of the Photocatalytic Behavior of TiO2 Coatings Elaborated by Different Thermal Spraying Processes, J. Therm. Spray Technol., 2006, 15(4), p 576-581CrossRefGoogle Scholar
  26. 26.
    H. Lee, Ch Choi, C. Lee, and H. Kim, Photocatalytic Properties of Nanostructured TiO2 Plasma Sprayed Coating, Surf. Coat. Technol., 2003, 173, p 192-200CrossRefGoogle Scholar
  27. 27.
    J. Colmenares-Angulo, S. Zhao, C. Young, and A. Orlov, The Effects of Thermal Spray Technique and Post-Deposition Treatment on the Photocatalytic Activity of TiO2 Coatings, Surf. Coat. Technol., 2009, 204, p 423-427CrossRefGoogle Scholar
  28. 28.
    C. Zhang, U. Chaudhary, S. Das, A. Godavarty, and A. Agarwal, Effect of Porosity on Photocatalytic Activity of Plasma-Sprayed TiO2 Coating, J. Therm. Spray Technol., 2013, 22(7), p 1193-1200CrossRefGoogle Scholar
  29. 29.
    G.-J. Yang, C.-J. Li, F. Han, and A. Ohmori, Microstructure and Photocatalytic Performance of High Velocity Oxy-Fuel Sprayed TiO2 coatings, Thin Solid Films, 2004, 466, p 81-85CrossRefGoogle Scholar
  30. 30.
    F.-L. Toma, G. Bertrand, D. Klein, C. Coddet, and C. Meunier, Nanostructured Photocatalytic Titania Coatings Formed by Suspension Plasma Spraying, J. Therm. Spray Technol., 2006, 15(4), p 587-592CrossRefGoogle Scholar
  31. 31.
    F.-L. Toma, G. Bertrand, S. Begin, C. Meunier, O. Barres, D. Klein, and C. Coddet, Microstructure and Environmental Functionalities of TiO2-Supported Photocatalysts Obtained by Suspension Plasma Spraying, Appl. Catal. B, 2006, 68, p 74-84CrossRefGoogle Scholar
  32. 32.
    I. Burlacov, J. Jirkovský, M. Müller, and R.B. Heimann, Induction Plasma-Sprayed Photocatalytically Active Titania Coatings and their Characterisation by Micro-Raman Spectroscopy, Surf. Coat. Technol., 2006, 201, p 255-264CrossRefGoogle Scholar
  33. 33.
    G. Bolelli, V. Cannillo, R. Gadow, A. Killinger, L. Lusvarghi, and J. Rauch, Properties of High Velocity Suspension Flame Sprayed (HVSFS) TiO2 coatings, Surf. Coat. Technol., 2009, 203, p 1722-1732CrossRefGoogle Scholar
  34. 34.
    S. Kozerski, F.-L. Toma, L. Pawlowski, B. Leupolt, L. Latka, and L.-M. Berger, Suspension Plasma Sprayed TiO2 Coatings Using Different Injectors and Their Photocatalytic Properties, Surf. Coat. Technol., 2010, 205, p 980-986CrossRefGoogle Scholar
  35. 35.
    E. Bannier, G. Darut, E. Sánchez, A. Denoirjean, M.C. Bordes, M.D. Salvador, E. Rayón, and H. Ageorges, Microstructure and Photocatalytic Activity of Suspension Plasma Sprayed TiO2 Coatings on Steel and Glass Substrates, Surf. Coat. Technol., 2011, 206, p 38-386CrossRefGoogle Scholar
  36. 36.
    C.-J Li, G.-J. Yang, X.-C. Huang, W. Li, and A. Ohmori, Formation of TiO2 Photocatalyst Through Cold Spraying, Thermal Spray 2004: Advances in Technology and Application, Proceedings of the International Thermal Spray Conference & Exhibition ITSC 2004, May 10-12, Osaka, Japan, DVS-Verlag GmbH, Düsseldorf, 2004, on CD-ROM VersionGoogle Scholar
  37. 37.
    M. Yamada, H. Isago, N. Nakano, and M. Fukumoto, Cold Spraying of TiO2 Photocatalyst with Nitrogen Process Gas, J. Therm. Spray Technol., 2010, 19(6), p 1218-1223CrossRefGoogle Scholar
  38. 38.
    I. Ivanova, J. Schneider, H. Gutzmann, J.-O. Kliemann, F. Gärtner, T. Klassen, D. Bahnemann, and C.B. Mendive, Photocatalytic Degradation of Oxalic and Dichloroacetic Acid on TiO2 Coated Metal Substrates, Cat. Today, 2013, 209, p 84-90CrossRefGoogle Scholar
  39. 39.
    H. Gutzmann, J.-O. Kliemann, R. Albrecht, F. Gärtner, T. Klassen, F.-L. Toma, L.-M. Berger, and B. Leupolt, Evaluation of the Photocatalytic Activity of TiO2-Coatings Prepared by Different Thermal Spray Techniques, Thermal Spray: Global Solutions for Future Applications, Proceedings of the 2010 International Thermal Spray Conference, Singapore, May 3-5, 2010, DVS 264, 2010, CD-ROM VersionGoogle Scholar
  40. 40.
    F.-L. Toma, L.-M. Berger, S. Langner, and T. Naumann, Suspension Spraying—The Potential of a New Spray Technology, Therm. Spray Bull., 2010, 3(1), p 24-29Google Scholar
  41. 41.
    L.-M. Berger, F.-L. Toma, and A. Potthoff, Thermal Spraying with Suspensions—An Economical Spray Process, Therm. Spray Bull., 2013, 6(2), p 98-101Google Scholar
  42. 42.
    P. Fauchais, V. Rat, J.-F. Coudert, R. Etchart-Salas, and G. Montavon, Operating Parameters for Suspension and Solution Plasma-Spray Coatings, Surf. Coat. Technol., 2008, 202(18), p 4309-4317CrossRefGoogle Scholar
  43. 43.
    L. Pawlowski, Suspension and Solution Thermal Spray Coatings, Surf. Coat. Technol., 2009, 203, p 2807-2829CrossRefGoogle Scholar
  44. 44.
    W.F. Zhang, Y.L. He, M.S. Zhang, Z. Yin, and Q. Chen, Raman Scattering Study on Anatase TiO2 Nanocrystals, J. Phys. D, 2000, 33, p 912-916CrossRefGoogle Scholar
  45. 45.
    K.M. Reddy, S.V. Manorama, and A.R. Reddy, Bandgap Studies on Anatase Titanium Dioxide Nanoparticles, Mater. Chem. Phys., 2002, 78, p 239-245CrossRefGoogle Scholar
  46. 46.
    H. Nakajima, T. Mori, Q. Shen, and T. Toyoda, Photoluminescence Study of Mixtures of Anatase and Rutile TiO2 Nanoparticles: Influence of Charge Transfer between the Nanoparticles on Their Photoluminescence Excitation Bands, Chem. Phys. Lett., 2005, 409(1-3), p 81-84CrossRefGoogle Scholar
  47. 47.
    G. Mauer, A. Guignard, and R. Vaßen, Plasma Spraying of Efficient Photoactive TiO2 Coatings, Surf. Coat. Technol., 2013, 220, p 40-43CrossRefGoogle Scholar
  48. 48.
    G.-J. Yang, C.-J. Li, and Y.-Y. Wang, Phase Formation of Nano-TiO2 Particles During Flame Spraying with Liquid Feedstock, J Therm. Spray Technol., 2005, 14(4), p 480-486CrossRefGoogle Scholar

Copyright information

© ASM International 2014

Authors and Affiliations

  • Filofteia-Laura Toma
    • 1
    Email author
  • Lutz-Michael Berger
    • 1
  • Irina Shakhverdova
    • 1
  • Beate Leupolt
    • 1
  • Annegret Potthoff
    • 2
  • Kathrin Oelschlägel
    • 2
  • Tobias Meissner
    • 2
  • José Antonio Ibáñez Gomez
    • 3
  • Yolanda de Miguel
    • 3
  1. 1.Fraunhofer Institute for Material and Beam Technology (IWS)DresdenGermany
  2. 2.Fraunhofer Institute for Ceramic and Sintering Technologies (IKTS)DresdenGermany
  3. 3.TECNALIA, Parque Tecnológico de BizkaiaDerioSpain

Personalised recommendations