Journal of Thermal Spray Technology

, Volume 22, Issue 7, pp 1193–1200 | Cite as

Effect of Porosity on Photocatalytic Activity of Plasma-Sprayed TiO2 Coating

  • Cheng Zhang
  • Ujwal Chaudhary
  • Santanu Das
  • Anuradha Godavarty
  • Arvind Agarwal
Peer Reviewed

Abstract

The effect of porosity on photocatalytic activity of plasma-sprayed TiO2 coating on steel substrate is studied by varying processing parameters viz. plasma power and powder feed rate. The relationship between porosity content and methylene blue (MB) dye decomposition rate was established to correlate coating microstructure and its photocatalytic activity. The coating with the highest porosity content exhibited best photocatalytic efficiency. The same processing parameters were used to deposit TiO2 coating on FTO glass. The photocatalytic activity of TiO2 coating on FTO was 2.5 times better than TiO2 coating on the steel substrate. TiO2 coating on FTO glass contains bimodal porosity distribution (micropores and submicron pores) which accelerated MB decomposition by accelerated diffusion of ionic species.

Keywords

FTO glass photocatalytic activity porosity TiO2 coating 

References

  1. 1.
    S.G. Kumar and L.G. Devi, Review on Modified TiO2 Photocatalysis Under UV/Visible Light: Selected Results and Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics, J. Phys. Chem. A, 2011, 115(46), p 13211-13241CrossRefGoogle Scholar
  2. 2.
    G. Liu, Y. Zhao, C. Sun, F. Li, G. Lu, and H. Cheng, Synergistic Effects of B/N Doping on the Visible-Light Photocatalytic Activity of Mesoporous TiO2, Angew. Chem. Int. Ed., 2008, 47(24), p 4516-4520CrossRefGoogle Scholar
  3. 3.
    N.N. Dinh, N.M. Quyen, D.N. Chung, D.N. Chung, M. Zikova, and V. Truong, Highly-Efficient Electrochromic Performance of Nanostructured TiO2 Films Made by Doctor Blade Technique, Sol. Energy Mater. Sol. Cells, 2011, 95(2), p 618-623CrossRefGoogle Scholar
  4. 4.
    H. Lee, M.Y. Song, J. Jurng, and Y. Park, The Synthesis and Coating Process of TiO2 Nanoparticles Using CVD Process, Powder Technol., 2011, 214(1), p 64-68CrossRefGoogle Scholar
  5. 5.
    T. Fu, C. Wen, J. Yu, Y. Zhou, S. Ma, B. Dong, and B. Liu, Sol-Gel Derived TiO2 Coating on Plasma Nitrided 316L Stainless Steel, Vacuum, 2012, 86(9), p 1402-1407CrossRefGoogle Scholar
  6. 6.
    A.K. Keshri, R. Patel, and A. Agarwal, Comprehensive Process Maps to Synthesize High Density Plasma Sprayed Aluminum Oxide Composite Coatings with Varying Carbon Nanotube Content, Surf. Coat. Technol., 2010, 205(3), p 690-702CrossRefGoogle Scholar
  7. 7.
    C. Lee, H. Choi, C. Lee, and H. Kim, Photocatalytic Properties of Nano-Structured TiO2 Plasma Sprayed Coating, Surf. Coat. Technol., 2003, 173(2-3), p 192-200CrossRefGoogle Scholar
  8. 8.
    T. Kanazawa and A. Ohmori, Behavior of TiO2 Coating Formation on PET Plate by Plasma Spraying and Evaluation of Coating’s Photocatalytic Activity, Surf. Coat. Technol., 2005, 197(1), p 45-50CrossRefGoogle Scholar
  9. 9.
    J. Liu, Y. Zeng, J. Gao, W. Qian, and C. Ding, Photocatalytic Efficiency Enhancement of Plasma-Sprayed TiO2 Coatings Under External Bias Voltage, Ceram. Int., 2006, 32(6), p 719-721CrossRefGoogle Scholar
  10. 10.
    Z. Yi, W. Wei, S. Lee, and J. Gao, Photocatalytic Performance of Plasma Sprayed Pt-Modified TiO2 Coatings Under Visible Light Irradiation, Catal. Commun., 2007, 8(6), p 906-912CrossRefGoogle Scholar
  11. 11.
    S. Kozerski, F.L. Toma, L. Pawlowski, B. Leupolt, L. Latka, and L.M. Berger, Suspension Plasma Sprayed TiO2 Coatings Using Different Injectors and Their Photocatalytic Properties, Surf. Coat. Technol., 2010, 250(4), p 980-986CrossRefGoogle Scholar
  12. 12.
    E. Bannier, G. Darut, E. Sanchez, A. Denoirjean, M.C. Bordes, M.D. Salvador, E. Rayon, and H. Ageorges, Microstructure and Photocatalytic Activity of Suspension Plasma Sprayed TiO2 Coatings on Steel and Glass Substrates, Surf. Coat. Technol., 2011, 206(2-3), p 378-386CrossRefGoogle Scholar
  13. 13.
    Z. Yi, J. Liu, W. Wei, J. Wang, and S.W. Lee, Photocatalytic Performance and Microstructure of Thermal-Sprayed Nanostructured TiO2 Coatings, Ceram. Int., 2008, 34(2), p 351-357CrossRefGoogle Scholar
  14. 14.
    G. Yang, C. Li, S. Fan, and J. Gao, Influence of Pore Structure on Ion Diffusion Property in Porous TiO2 Coating and Photovoltaic Performance of Dye-Sensitized Solar Cells, Surf. Coat. Technol., 2011, 205(10), p 3205-3210CrossRefGoogle Scholar
  15. 15.
    H. Chang, C. Su, C. Lo, L. Chen, T. Tsung, and C. Jwo, Photodecomposition and Surface Adsorption of Methylene Blue on TiO2 Nanofluid Prepared by ASNSS, Mater. Trans., 2004, 45(12), p 3334-3337CrossRefGoogle Scholar
  16. 16.
    J.F. Shackleford and W. Alexander, Ed., CRC Materials Science and Engineering Handbook, 3rd ed., CRC Press, Boca Raton, FL, 2001, p 285Google Scholar
  17. 17.
    H. Kawaguchi, Photocatalytic Decomposition of Phenol in the Presence of Titanium Dioxide, Environ. Technol. Lett., 1984, 5, p 471-474CrossRefGoogle Scholar
  18. 18.
    A. Wold, Photocatalytic Properties of Titanium Dioxide (TiO2), Chem. Mater., 1993, 5(3), p 280-283Google Scholar
  19. 19.
    C. Zhang, U. Chaudhary, D. Lahiri, A. Godavarty, and A. Agarwal, Photo-catalytic Activity of Spark Plasma Sintered TiO2-Graphene Nano Platelet Composite System, Scr. Mater., 2013, 68(9), p 719-722CrossRefGoogle Scholar

Copyright information

© ASM International 2013

Authors and Affiliations

  • Cheng Zhang
    • 1
  • Ujwal Chaudhary
    • 2
  • Santanu Das
    • 1
  • Anuradha Godavarty
    • 2
  • Arvind Agarwal
    • 1
  1. 1.Plasma Forming Laboratory, Department of Mechanical and Materials EngineeringFlorida International UniversityMiamiUSA
  2. 2.Department of Biomedical EngineeringFlorida International UniversityMiamiUSA

Personalised recommendations