Journal of Thermal Spray Technology

, Volume 22, Issue 4, pp 463–470 | Cite as

The Corrosion Behavior of Cold Sprayed Zinc Coatings on Mild Steel Substrate

  • Naveen Manhar Chavan
  • B Kiran
  • A Jyothirmayi
  • P Sudharshan Phani
  • G Sundararajan
Peer Reviewed


Zinc and its alloy coatings have been used extensively for the cathodic protection of steel. Zinc coating corrodes in preference to the steel substrate due to its negative corrosion potential. Numerous studies have been conducted on the corrosion behavior of zinc and its alloy coatings deposited using several techniques viz., hot dip galvanizing, electrodeposition, metalizing or thermal spray etc. Cold spray is an emerging low temperature variant of thermal spray family which enables deposition of thick, dense, and pure coatings at a rapid rate with an added advantage of on-site coating of steel structures. In the present study, the corrosion characteristics of cold sprayed zinc coatings have been investigated for the first time. In addition, the influence of heat treatment of zinc coating at a temperature of 150 °C on its corrosion behavior has also been addressed.


cold spray corrosion porosity potentiodynamic polarization zinc 



One of the authors would like to thank Mr. Nitin P. Wasekar for helpful discussions, Mr. G.V. Reddy and Mr. K. Ramesh Reddy for X-ray diffraction and SEM analyses.


  1. 1.
    A.R. Marder, The Metallurgy of Zinc coated Steel, Prog. Mater. Sci., 2000, 45, p 191CrossRefGoogle Scholar
  2. 2.
    F.M. Androsch, K. Kösters, and K.H. Stellnberger, Accelerated Corrosion Tests for Corrosion Protection Systems on Steel Sheet for the Automotive Industry, Stahl Eisen, 2000, 121, p 37Google Scholar
  3. 3.
    S.R. Lampman, T.B. Zorc, Ed., Properties and Selection of Non-Ferrous Alloys and Special Materials, 10th ed., ASM Handbook, Vol 2, 1998, p 1618Google Scholar
  4. 4.
    American Welding Society, “Corrosion Tests of Flame Sprayed Coated Steel 19 Year Report”, C2 14-79, 1974Google Scholar
  5. 5.
    S. Kuroda, J. Kawakita, and M. Takemoto, An 18-Year Exposure Test of Thermal-Sprayed Zn, Al, and Zn-Al Coatings in Marine Environment, Corrosion, 2006, 62(7), p 635CrossRefGoogle Scholar
  6. 6.
    M. Mounga, P. Bercot, and J.Y. Rauch, Comparison of Corrosion Behaviour of Zinc in NaCl and in NaOH Solutions. Part I: Corrosion Layer Characterization, Corros. Sci., 2010, 52, p 3984CrossRefGoogle Scholar
  7. 7.
    M. Mouanga and P. Bercot, Comparison of Corrosion Behaviour of Zinc in NaCl and in NaOH Solutions; Part II: Electrochemical Analyses, Corros. Sci., 2010, 52, p 3993CrossRefGoogle Scholar
  8. 8.
    A.K. Neufeld, I.S. Cole, A.M. Bond, and S.A. Furman, The Initiation Mechanism of Corrosion of Zinc by Sodium Chloride Particle Deposition, Corros. Sci., 2002, 44, p 555CrossRefGoogle Scholar
  9. 9.
    S. Bonk, M. Wicinski, A.W. Hassel, and M. Stratmann, Electrochemical Characterizations of Precipitates Formed on Zinc in Alkaline Sulphate Solution with Increasing pH Values, Electrochem. Commun., 2004, 6, p 800CrossRefGoogle Scholar
  10. 10.
    G.A. El-Mahdy, A. Nishikata, and T. Tsuru, Electrochemical Corrosion Monitoring of Galvanized Steel Under Cyclic Wet-Dry Conditions, Corros. Sci., 2000, 42, p 183CrossRefGoogle Scholar
  11. 11.
    Wiki Factbox, The Vital Statistics of Zinc, London CRU Group, Retrieved 3 March 2010Google Scholar
  12. 12.
    V. Barranco, S. Feliu, Jr., and S. Feliu, EIS Study of the Corrosion Behaviour of Zinc-Based Coatings on Steel in Quiescent 3% NaCl Solution. Part 1: Directly Exposed Coatings, Corros. Sci., 2004, 46, p 2203CrossRefGoogle Scholar
  13. 13.
    F.M. Queiroz and I. Costa, Electrochemical, Chemical and Morphological Characterization of Galvannealed Steel Coating, Surf. Coat. Technol., 2007, 201, p 7024CrossRefGoogle Scholar
  14. 14.
    R. Ramanauskas, P. Quintana, L. Maldonado, R. Pomés, and M.A. Pech-Canul, Corrosion Resistance and Microstructure of Electrodeposited Zn and Zn Alloy Coatings, Surf. Coat. Technol., 1997, 92, p 16CrossRefGoogle Scholar
  15. 15.
    A.P. Yadav, A. Nishikata, and T. Tsuru, Degradation Mechanism of Galvanized Steel in Wet-Dry Cyclic Environment Containing Chloride Ions, Corros. Sci., 2004, 46, p 361CrossRefGoogle Scholar
  16. 16.
    V. de Freitas Cunha Lins, G.F. de Andrade Reis, C.R. de Araujo, and T. Matencio, Electrochemical Impedance Spectroscopy and Linear Polarization Applied to Evaluation of Porosity of Phosphate Conversion Coatings on Electrogalvanized Steels, Appl. Surf. Sci., 2006, 253, p 2875CrossRefGoogle Scholar
  17. 17.
    M. Hosseini, H. Ashassi-Sorkhabi, and H.A.Y. Ghiasvand, Corrosion Protection of Electro-Galvanized Steel by Green Conversion Coatings, J. Rare Earths, 2007, 25, p 537CrossRefGoogle Scholar
  18. 18.
    D. Chaliampalias, G. Vourlias, N. Pistofidis, G. Stergioudis, and E.K. Polychroniadis, A Morphological and Microstructural Study of Flame-Sprayed Zinc Coatings on Low-Alloyed Steels as a Contribution to Explaining Their Corrosion Resistance, Phys. Status Solidi. (a), 2008, 205, p 1566CrossRefGoogle Scholar
  19. 19.
    T. Kobayashi, T. Maruyama, and M. Kano, Characterization of Pure Aluminum and Zinc Sprayed Coatings produced by Flame Spraying, Mater. Trans., 2003, 44, p 2711CrossRefGoogle Scholar
  20. 20.
    W. Zhao, Y. Wang, C. Liu, L. Dong, H. Yu, and H. Ai, Erosion-Corrosion of Thermally Sprayed Coatings in Simulated Splash Zone, Surf. Coat. Technol., 2010, 205, p 2267CrossRefGoogle Scholar
  21. 21.
    E. Almeida, D. Pereira, and O. Figueiredo, The Degradation of Zinc Coatings in Salty Atmospheres, Prog. Org. Coat., 1989, 17, p 175CrossRefGoogle Scholar
  22. 22.
    C.J. Li, W.-Y. Li, and H. Fukanuma, Impact Fusion Phenomenon During Cold Spraying of Zinc, Proceedings of the International Thermal Spray Conference, 2004, p 335Google Scholar
  23. 23.
    W.-Y. Li, C.-J. Li, and G.-J. Yang, Effect of Impact-Induced Melting on Interface Microstructure and Bonding of Cold-Sprayed Zinc Coating, Appl. Surf. Sci., 2010, 257, p 1516CrossRefGoogle Scholar
  24. 24.
    A. Wank, B. Wielage, H. Podlesak, and T. Grund, High-Resolution Microstructural Investigations of Interfaces Between Light Metal Alloy Substrates and Cold Gas-Sprayed Coatings, J. Therm. Spray Technol., 2006, 15, p 280CrossRefGoogle Scholar
  25. 25.
    B. Wielage, T. Grund, S. Ahrens, A. Wank, and F. Trommer, Cold Gas Sprayed Filler Coatings for Brazing of Light Alloys, Surf. Eng., 2006, 22, p 98CrossRefGoogle Scholar
  26. 26.
    J.G. Legoux, E. Irissou, and C. Moreau, Effect of Substrate Temperature on the Formation Mechanism of Cold-Sprayed Aluminum, Zinc and Tin Coatings, J. Therm. Spray Technol., 2007, 16, p 619CrossRefGoogle Scholar
  27. 27.
    H. Koivuluoto, J. Lagerbom, M. Kylmalahti, and P. Vuoristo, Microstructure and Mechanical Properties of Low-Pressure Cold-Sprayed (LPCS) Coatings, J. Therm. Spray Technol., 2008, 17, p 721CrossRefGoogle Scholar
  28. 28.
    P. Sudharshan Phani, D. Srinivasa Rao, S.V. Joshi, and G. Sundararajan, Effect of Process Parameters and Heat Treatments on Properties of Cold Sprayed Copper Coatings, J. Therm. Spray Technol., 2007, 16, p 425CrossRefGoogle Scholar
  29. 29.
    P. Sudharshan Phani, V. Vishnukanthan, and G. Sundararajan, Effect of Heat Treatment on Properties of Cold Sprayed Nanocrystalline Copper Alumina Coatings, Acta Mater., 2007, 55, p 4741-4751CrossRefGoogle Scholar
  30. 30.
    H.-R. Wang, B.-R. Hou, J. Wang, Q. Wang, and W.-Y. Li, Effect of Process Conditions on Microstructure and Corrosion Resistance of Cold-Sprayed Ti Coatings, J. Therm. Spray Technol., 2008, 17, p 736CrossRefGoogle Scholar
  31. 31.
    L. Ajdelsztajn, B. Jodoin, and J.M. Schoenung, Synthesis and Mechanical Properties of Nanocrystalline Ni Coatings Produced by Cold Gas Dynamic Spraying, Surf. Coat. Technol., 2006, 201, p 1166CrossRefGoogle Scholar
  32. 32.
    R.S. Lima, J. Karthikeyan, C.M. Kay, J. Lindemann, and C.C. Berndt, Microstructural Characteristics of Cold-Sprayed Nanostructured WC-Co Coatings, Thin Solid Films, 2002, 416, p 129CrossRefGoogle Scholar
  33. 33.
    L. Ajdelsztajn, B. Jodoin, G.E. Kim, and J.M. Schoenung, Cold Spray Deposition of Nanocrystalline Aluminum Alloys, Metall. Mater. Trans. A, 2005, 36, p 657CrossRefGoogle Scholar
  34. 34.
    H.Y. Lee, Y.H. Yu, Y.C. Lee, Y.P. Hong, and K.H. Ko, Cold Spray of SiC and Al2O3 with Soft Metal Incorporation: A Technical Contribution, J. Therm. Spray Technol., 2004, 13, p 184CrossRefGoogle Scholar
  35. 35.
    H. Koivuluoto, J. Nakki, and P. Vuoristo, Corrosion Properties of Cold-Sprayed Tantalum Coatings, J. Therm. Spray Technol., 2009, 18, p 75CrossRefGoogle Scholar
  36. 36.
    K. Balani, T. Laha, A. Agarwal, J. Karthikeyan, and N. Munroe, Effect of Carrier Gases on Microstructural and Electrochemical Behavior of Cold-Sprayed 1100 Aluminum Coatings, Surf. Coat. Technol., 2005, 195, p 272CrossRefGoogle Scholar
  37. 37.
    N. Bala, H. Singh, and S. Prakash, Accelerated Hot Corrosion Studies of Cold Spray Ni-50Cr Coating on Boiler Steels, Mater. Des., 2010, 31, p 244CrossRefGoogle Scholar
  38. 38.
    H.-R. Wang, W.-Y. Li, L. Ma, J. Wang, and Q. Wang, Corrosion Behavior of Cold Sprayed Titanium Protective Coating on 1Cr13 Substrate in Seawater, Surf. Coat. Technol., 2007, 201, p 5203CrossRefGoogle Scholar
  39. 39.
    G. Sundararajan, P. Sudharshan Phani, A. Jyothirmayi, and R.C. Gundakaram, The Influence of Heat Treatment on the Microstructural, Mechanical and Corrosion Behaviour of Cold Sprayed SS 316L Coatings, J. Mater. Sci., 2009, 44, p 2320CrossRefGoogle Scholar
  40. 40.
    G. Sundararajan, N.M. Chavan, G. Sivakumar, and P. Sudharshan Phani, Evaluation of Parameters for Assessment of Inter-Splat Bond Strength in Cold Sprayed Coatings, J. Therm. Spray Technol., 2010, 19, p 1255CrossRefGoogle Scholar
  41. 41.
    N.M. Chavan, M. Ramakrishna, P. Sudharshan Phani, D. Srinivasa Rao, and G. Sundararajan, The Influence of Process Parameters and Heat Treatment on the Properties of Cold Sprayed Silver Coatings, Surf. Coat. Technol., 2011, 205, p 4798CrossRefGoogle Scholar
  42. 42.
    W.Y. Li, C.-J. Li, and H. Liao, Effect of Annealing Treatment on the Microstructure and Properties of Cold-Sprayed Cu Coating, J. Therm. Spray Technol., 2006, 15, p 206CrossRefGoogle Scholar
  43. 43.
    A. Jyothirmayi, “Corrosion Behaviour of Zinc Coatings”, Unpublished work, ARCI, Hyderabad, India, 2011Google Scholar

Copyright information

© ASM International 2013

Authors and Affiliations

  • Naveen Manhar Chavan
    • 1
  • B Kiran
    • 1
  • A Jyothirmayi
    • 1
  • P Sudharshan Phani
    • 1
  • G Sundararajan
    • 1
  1. 1.International Advanced Research Centre for Powder Metallurgy & New Materials (ARCI)HyderabadIndia

Personalised recommendations