Journal of Thermal Spray Technology

, Volume 22, Issue 2–3, pp 83–89

Process Conditions and Microstructures of Ceramic Coatings by Gas Phase Deposition Based on Plasma Spraying

Peer Reviewed


Plasma spraying at very low pressure (50-200 Pa) is significantly different from atmospheric plasma conditions (APS). By applying powder feedstock, it is possible to fragment the particles into very small clusters or even to evaporate the material. As a consequence, the deposition mechanisms and the resulting coating microstructures could be quite different compared to conventional APS liquid splat deposition. Thin and dense ceramic coatings as well as columnar-structured strain-tolerant coatings with low thermal conductivity can be achieved offering new possibilities for application in energy systems. To exploit the potential of such a gas phase deposition from plasma spray-based processes, the deposition mechanisms and their dependency on process conditions must be better understood. Thus, plasma conditions were investigated by optical emission spectroscopy. Coating experiments were performed, partially at extreme conditions. Based on the observed microstructures, a phenomenological model is developed to identify basic growth mechanisms.


activation energy gas phase deposition microstructure plasma spray-PVD structure zone model 


  1. 1.
    C. Verdy, C. Zhang, D. Sokolov, H. Liao, D. Klein, and C. Coddet, Gas-tight Coatings Produced by Very Low Pressure Plasma Spraying, Thermal Spray 2008: Thermal Spray Crossing Borders, on CD-ROM, E. Lugscheider, Ed., June 02-04, 2008 (Maastricht, The Netherlands), Verlag für Schweißen und verwandte Verfahren, 2008, p 398-402Google Scholar
  2. 2.
    G. Mauer, R. Vaßen, and D. Stöver, Thin and Dense Ceramic Coatings by Plasma Spraying at Very Low Pressure, J. Therm. Spray Technol., 2010, 19(1-2), p 495-501CrossRefGoogle Scholar
  3. 3.
    L. Zhu, N. Zhang, B. Zhang, F. Sun, R. Bolot, M.-P. Planche, H. Liao, and C. Coddet, Very Low Pressure Plasma Sprayed Alumina and Yttria-Stabilized Zirconia Thin Dense Coatings Using a Modified Transferred Arc Plasma Torch, Appl. Surf. Sci., 2011, 258(4), p 1422-1428CrossRefGoogle Scholar
  4. 4.
    K. von Niessen and M. Gindrat, Plasma Spray-PVD: A New Thermal Spray Process to Deposit Out of the Vapor Phase, J. Therm. Spray Technol., 2011, 20(4), p 736-743CrossRefGoogle Scholar
  5. 5.
    K. von Niessen, M. Gindrat, and A. Refke, Vapor Phase Deposition Using Plasma Spray-PVD, Therm. Spray Technol., 2010, 19(1-2), p 502-509CrossRefGoogle Scholar
  6. 6.
    B. Jodoin, M. Gindrat, J.-L. Dorier, C. Hollenstein, M. Loch, and G. Barbezat, Modeling and Diagnostics of a Supersonic DC Plasma Jet Expanding at Low Pressure, International Thermal Spray Conference, E. Lugscheider, C.C. Berndt, Ed., March 04-06, 2002 (Essen, Germany), Verlag für Schweißen und verwandte Verfahren DVS-Verlag, 2002, p 716-720Google Scholar
  7. 7.
    J. Hafiz, R. Mukherjee, X. Wang, P.H. McMurry, J.V.R. Heberlein, and S.L. Girshick, Hypersonic Plasma Particle Deposition-A Hybrid between Plasma Spraying and Vapor Deposition, J. Therm. Spray Technol., 2006, 15(4), p 822-826CrossRefGoogle Scholar
  8. 8.
    J. Aubreton, M.F. Elchinger, V. Rat, and P. Fauchais, Two-Temperature Transport Coefficients in Argon-Helium Thermal Plasmas, J. Phys. D, 2004, 37, p 34-41CrossRefGoogle Scholar
  9. 9.
    G. Mauer, R. Vaßen, and D. Stöver, Plasma and Particle Temperature Measurements in Thermal Spray: Approaches and Applications, J. Therm. Spray Technol., 2011, 20(3), p 391-406CrossRefGoogle Scholar
  10. 10.
    H. Kaßner, R. Siegert, D. Hathiramani, R. Vaßen, and D. Stöver, Application of Suspension Plasma Spraying (SPS) for Manufacture of Ceramic Coatings, J. Therm. Spray Technol., 2008, 17(1), p 115-123CrossRefGoogle Scholar
  11. 11.
    K. VanEvery, M.J.M. Krane, R.W. Trice, H. Wang, W. Porter, M. Besser, D. Sordelet, J. Ilavsky, and J. Almer, Column Formation in Suspension Plasma-Sprayed Coatings and Resultant Thermal Properties, J. Therm. Spray Technol., 2011, 20(4), p 817-828CrossRefGoogle Scholar
  12. 12.
    J.A. Venables, G.D.T. Spiller, and M. Hanbücken, Nucleation and Growth of Thin Films, Rep. Prog. Phys., 1984, 47, p 399-459CrossRefGoogle Scholar
  13. 13.
    J.A. Thornton, High Rate Thick Film Growth, Ann. Rev. Mater. Sci., 1977, 7, p 239-260CrossRefGoogle Scholar
  14. 14.
    B.A. Movchan and A.V. Demchishin, Study of the Structure and Properties of Thick Vacuum Condensates of Nickel, Titanium, Tungsten, Aluminum Oxide and Zirconium Dioxide, Phys. Met. Metallogr., 1969, 28(4), p 83-90Google Scholar
  15. 15.
    J.A. Thornton, Influence of Apparatus Geometry and Deposition Conditions on Structure and Topography of Thick Sputtered Coatings, J. Vac. Sci. Technol., 1974, 11(4), p 666-670CrossRefGoogle Scholar
  16. 16.
    J.A. Thornton, Influence of Substrate Temperature and Deposition Rate on Structure of Thick Sputtered Cu Coatings, J. Vac. Sci. Technol., 1975, 12(4), p 830-835CrossRefGoogle Scholar
  17. 17.
    R. Messier, A.P. Giri, and R.A. Roy, Revised Structure Zone Model for Thin Film Physical Structure, J. Vac. Sci. Technol., A, 1984, 2(2), p 500-503CrossRefGoogle Scholar
  18. 18.
    J. Musil, S. Kadlec, V. Valvoda, R. Kužel, and R. Černý, Ion-Assisted Sputtering if TiN Films, Surf. Coat. Technol., 1990, 43/44, p 259-269CrossRefGoogle Scholar
  19. 19.
    X. Wang and A. Atkinson, Microstructure Evolution in Thin Zirconia Films: Experimental Observation and Modeling, Acta Mater., 2011, 59, p 2514-2525CrossRefGoogle Scholar

Copyright information

© ASM International 2012

Authors and Affiliations

  1. 1.Forschungszentrum JülichInstitut für Energie- und Klimaforschung (IEK-1)JülichGermany

Personalised recommendations