Journal of Thermal Spray Technology

, Volume 21, Issue 3–4, pp 441–447

Deposition of La1−xSrxFe1−yCoyO3−δ Coatings with Different Phase Compositions and Microstructures by Low-Pressure Plasma Spraying-Thin Film (LPPS-TF) Processes

  • N. Zotov
  • A. Hospach
  • G. Mauer
  • D. Sebold
  • R. Vaßen
Peer Reviewed


Perovskite-type materials with the general chemical formula A1−xA′xB1−yB′yO3−δ have received considerable attention as candidates for oxygen separation membranes. Preparation of La1−xSrxFe1−yCoyO3−δ (LSFC) coatings by low-pressure plasma spraying-thin film processes using different plasma spray parameters is reported and discussed. Deposition with Ar-He plasma leads to formation of coatings containing a mixture of cubic LSFC perovskite, SrLaFeO4, FeCo, and metal oxides. Coatings deposited at higher oxygen partial pressures by pumping oxygen into the vacuum chamber contain more than 85% perovskite and only a few percent Fe3−xCoxO4, and/or CoO. The microstructures of the investigated LSFC coatings depend sensitively on the oxygen partial pressure, the substrate temperature, the plasma jet velocities, and the deposition rate. Coatings deposited with Ar-rich plasma, relatively low net torch power, and with higher plasma jet velocities are most promising for applications as oxygen permeation membranes.


low pressure plasma spraying-thin film (LPPS-TF) LSFC oxygen permeation membranes plasma jet velocities x-ray diffraction 


  1. 1.
    O. Büchler, J.M. Serra, W.A. Meulenberg, D. Sebold, and H.P. Buchkremer, Preparation and Properties of Thin LSFC Perovskitic Membranes Supported on Tailored Ceramic Substrates, Solid State Ion., 2007, 178(1-2), p 91-99CrossRefGoogle Scholar
  2. 2.
    J.M. Serra, V.B. Vert, O. Buchler, W.A. Maulenberg, and H.P. Buchkremer, IT-SOFC Supported on Oxygen Mixed Ionic-Electronic Conducting Composites, Chem. Mater., 2008, 20(12), p 3867-3875CrossRefGoogle Scholar
  3. 3.
    S. Park, S. Kumar, H. Na, and C. Lee, Effects of Silver Addition on Properties and Performance of Plasma Sprayed La0.6Sr0.4Co0.2Fe0.8O3−δ Interconnect Layer, J. Therm. Spray Technol., 2008, 17(5-6), p 708-714CrossRefGoogle Scholar
  4. 4.
    J. Harris and O. Kesler, Atmospheric Plasma Spraying Low-Temperature Cathode Materials for Solid Oxide Fuel Cells, J. Therm. Spray Technol., 2010, 19(1-2), p 328-335CrossRefGoogle Scholar
  5. 5.
    J.-L. Dorrier, M. Gindrat, Ch. Hollstein, M. Loch, A. Refke, A. Salito, and G. Barberatz, Plasma Jet Properties in a New Spraying Process at Low Pressure for Large Area Thin Film Deposition, 2nd International Thermal Spray Conference, 2001, p 759-764Google Scholar
  6. 6.
    A. Refke, D. Hawley, J. Deosburg, and R. Schmid, LPPS Thin Film Technology for the Application of TBC Systems, International Thermal Spray Conference, 2005, p 438-443Google Scholar
  7. 7.
    K. von Niessen, M. Gindrat, and A. Refke, Vapor Phase Deposition Using Plasma Spray—PVD™, J. Therm. Spray Technol., 2010, 19(1-2), p 502-509CrossRefGoogle Scholar
  8. 8.
    Z. Salhi, D. Klein, P. Gougeon, and Ch. Coddet, Development of Coating by Thermal Plasma Spraying Under Very Low-Pressure Condition <1 mbar, Vacuum, 2005, 77(2), p 145-150CrossRefGoogle Scholar
  9. 9.
    G. Mauer, R. Vaßen, and D. Stöver, Thin and Dense Ceramic Coatings by Plasma Spraying at Very Low Pressure, J. Therm. Spray Technol., 2010, 19(1-2), p 495-501CrossRefGoogle Scholar
  10. 10.
    M. Gindrat and R. Damani, LPPS Hybrid Technologies for Emerging Energy Applications—Recent Developments, International Thermal Spray Conference, 27-30 September 2011 (Hamburg, Germany), 2011Google Scholar
  11. 11.
    N. Zotov, A. Hospach, G. Mauer, D. Sebold, and R. Vaßen, Deposition of La-Sr-Fe-Co Perovskite Coatings with Different Microstructures by Low Pressure Plasma Spraying, International Thermal Spray Conference, 27-30 September 2011 (Hamburg, Germany), 2011Google Scholar
  12. 12.
    J. Heberlein, D. Kolman, and H. Chen, Hybrid Plasma Spray—PVD Coatings in Triple Torch Plasma Reactor, Building on 100 Years of Success: Proceedings of the 2006 International Thermal Spray Conference, B.R. Marple, M.M. Hyland, Y.C. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006Google Scholar
  13. 13.
    L. Zhu, N. Zhang, B. Zhang, F. Sun, R. Bolot, M.-P. Planche, H. Liao, and Ch. Coddet, Very Low Pressure Plasma Sprayed Alumina and Yttria-Stabilized Zirconia Thin Dense Coatings Using a Modified Transferred Arc Plasma Torch, Appl. Surf. Sci., 2011, 258(4), p 1422-1428CrossRefGoogle Scholar
  14. 14.
    S.E. Dann, D.B. Currie, M.T. Weller, M.F. Thomas, and A.D. Al-Rawwas, The Effect of Oxygen Stoichiometry on Phase Relations and Structure in the System La1−xSrxFeO3−δ (0 ≤ x ≤ 1, 0 ≤ d ≤ 0.5), J. Solid State Chem., 1994, 109(1), p 134-144CrossRefGoogle Scholar
  15. 15.
    F.J. Berry, J.F. Marco, and X. Ren, Reduction Properties of Phases in the System La0.5Sr0.5MO3 (M = Fe, Co), J. Solid State Chem., 2005, 178(4), p 961-969CrossRefGoogle Scholar
  16. 16.
    J. Disam, K. Luebbers, U. Neudert, and A. Sickinger, Effect of LPPS Spray Parameters on the Structure of Ceramic Coatings, J. Therm. Spray Technol., 1994, 3(2), p 142-147CrossRefGoogle Scholar
  17. 17.
    R.M. Young and E. Pfender, Nusselt Number Correlations for Heat Transfer to Small Spheres in Thermal Plasma Flows, Plasma Chem. Plasma Process., 1987, 7(2), p 211-229CrossRefGoogle Scholar
  18. 18.
    B.J. McBride, M.J. Zehe, and S. Gordon, NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species, NASA TP-2002-211556, 2002Google Scholar
  19. 19.
    A. Vardelle, P. Fauchais, B. Dussoubs, and N.J. Themelis, Heat Generation and Particle Injection in a Thermal Plasma Torch, Plasma Chem. Plasma Process., 1998, 18(4), p 551-574CrossRefGoogle Scholar
  20. 20.
    F.H. Chung, Quantitative Interpretation of X-Ray Diffraction Patterns of Mixtures III. Simultaneous Determination of a Set of Reference Intensities, J. Appl. Crystallogr., 1975, 8, p 17-19CrossRefGoogle Scholar
  21. 21.
    A. Fossdal, M. Menon, I. Waernhus, K. Wiik, M.-A. Einarsrud, and T. Grande, Crystal Structure and Thermal Expansion of La1−xSrxFeO3−δ Materials, J. Am. Ceram. Soc., 2004, 87(10), p 1952-1958CrossRefGoogle Scholar
  22. 22.
    M. Kuhn, K. Sato, K. Yashiro, J. Mizusaki, and S.-I. Hashimoto, Oxygen Nonstoichiometry, Thermo-Chemical Stability and Crystal Structure of La0.6Sr0.4MO3−δ (M = Fe,Co), International Symposium Defects, Transport and Related Phenomena, Materials Science & Technology (MS&T), 2010, p 206-213Google Scholar
  23. 23.
    A.G. Dirks and H.J. Leamy, Columnar Microstructure in Vapour-Deposited Thin Films, Thin Solid Films, 1977, 47(3), p 219-233CrossRefGoogle Scholar
  24. 24.
    K.H. Baik, P.S. Grant, and B. Cantor, The Equiaxed-Banded Microstructural Transition During Low Pressure Plasma Spraying, Acta Mater., 2004, 52(1), p 199-208CrossRefGoogle Scholar
  25. 25.
    A.G. Konstandopoulos, Deposit Growth Dynamics—Particle Sticking and Scattering Phenomena, Powder Technol., 2000, 109(1-3), p 262-277CrossRefGoogle Scholar
  26. 26.
    A. Refke, G. Barbezat, J.L. Dorier, M. Gindrat, and Ch. Hollenstein, Characterization of LPPS Processes Under Various Spray Conditions for Potential Applications, Thermal Spray 2003: Advancing the Science & Applying the Technology, C. Moreau and B.R. Marple, Ed., ASM International, Materials Park, OH, 2003, p 581-588Google Scholar

Copyright information

© ASM International 2012

Authors and Affiliations

  • N. Zotov
    • 1
  • A. Hospach
    • 1
  • G. Mauer
    • 1
  • D. Sebold
    • 1
  • R. Vaßen
    • 1
  1. 1.IEK-1, Forschungszentrum Jülich GmbHJülichGermany

Personalised recommendations