Journal of Thermal Spray Technology

, Volume 21, Issue 3–4, pp 416–424

Deposition and Characteristics of Submicrometer-Structured Thermal Barrier Coatings by Suspension Plasma Spraying

  • Alexandre Guignard
  • Georg Mauer
  • Robert Vaßen
  • Detlev Stöver


In the field of thermal barrier coatings (TBCs) for gas turbines, suspension plasma sprayed (SPS) submicrometer-structured coatings often show unique mechanical, thermal, and optical properties compared to conventional atmospheric plasma sprayed ones. They have thus the potential of providing increased TBC performances under severe thermo-mechanical loading. Experimental results showed the capability of SPS to obtain yttria stabilized zirconia coatings with very fine porosity and high density of vertical segmentation cracks, yielding high strain tolerance, and low Young’s modulus. The evolution of the coating microstructure and properties during thermal cycling test at very high surface temperature (1400 °C) in our burner rigs and under isothermal annealing was investigated. Results showed that, while segmentation cracks survive, sintering occurs quickly during the first hours of exposure, leading to pore coarsening and stiffening of the coating. In-situ measurements at 1400 °C of the elastic modulus were performed to investigate in more detail the sintering-related stiffening.


nanostructured materials segmented coatings suspension spraying thermal barrier coatings (TBCs) thermal cycling Young’s modulus yttria stabilized zirconia (YSZ) 


  1. 1.
    L. Pawlowski, Suspension and Solution Thermal Spray Coatings, Surf. Coat. Technol., 2009, 203(19), p 2807-2829CrossRefGoogle Scholar
  2. 2.
    P. Fauchais and G. Montavon, Latest Developments in Suspension and Liquid Precursor Thermal Spraying, J. Therm. Spray Technol., 2010, 19(1-2), p 226-239CrossRefGoogle Scholar
  3. 3.
    P. Fauchais, G. Montavon, R.S. Lima, and B.R. Marple, Engineering a New Class of Thermal Spray Nano-Based Microstructures from Agglomerated Nanostructured Particles, Suspensions and Solutions: An Invited Review, J. Phys. D: Appl. Phys., 2011, 44(9), art. no. 093001Google Scholar
  4. 4.
    P. Fauchais and A. Vardelle, Innovative and Emerging Processes in Plasma Spraying: From Micro- to Nano-Structured Coatings, J. Phys. D: Appl. Phys., 2011, 44(19), art. no. 194011Google Scholar
  5. 5.
    A. Killinger, R. Gadow, G. Mauer, A. Guignard, R. Vaßen, and D. Stöver, Review of New Developments in Suspension and Solution Precursor Thermal Spray Processes, J. Therm. Spray Technol., 2011, 20(4), p 677-695CrossRefGoogle Scholar
  6. 6.
    E. Meillot, R. Vert, C. Caruyer, D. Damiani, and M. Vardelle, Manufacturing Nanostructured YSZ Coatings by Suspension Plasma Spraying (SPS): Effect of Injection Parameters, J. Phys. D: Appl. Phys., 2011, 44(19), art. no. 194008Google Scholar
  7. 7.
    O. Marchand, L. Girardot, M.P. Planche, P. Bertrand, Y. Bailly, and G. Bertrand, An Insight into Suspension Plasma Spray: Injection of the Suspension and Its Interaction with the Plasma Flow, J. Therm. Spray Technol., 2011, 20(6), p 1310-1320CrossRefGoogle Scholar
  8. 8.
    L. Łatka, S.B. Goryachev, S. Kozerski, L. Pawłowski, and T. Lampke, Buildup Mechanisms of Suspension Plasma Sprayed ZrO2 + 8 wt.% Y2O3 Coatings, ITSC 2011, DVS-Berichte, Vol. 276, 27-29 Sep 2011 (Hamburg), DVS Media, Düsseldorf, 2011, p 104-108Google Scholar
  9. 9.
    A. Bacciochini, G. Montavon, J. Ilavsky, A. Denoirjean, and P. Fauchais, Porous Architecture of SPS Thick YSZ Coatings Structured at the Nanometer Scale (~50 nm), J. Therm. Spray Technol., 2010, 19(1-2), p 198-206CrossRefGoogle Scholar
  10. 10.
    G. Montavon, J. Ilavsky, A. Denoirjean, P. Fauchais, A. Bacciochini, and K. Wittmann-Teneze, Ultra-Small Angle X-Ray Scattering (USAXS) In-Situ Quantification of Void Network Evolution During Annealing of Nanometer-Sized YSZ Plasma-Sprayed Coatings, ITSC 2011, DVS-Berichte, Vol. 276, 27-29 Sep 2011 (Hamburg), DVS Media, Düsseldorf, 2011, p 451-456Google Scholar
  11. 11.
    A. Moign, A. Vardelle, N.J. Themelis, and J.G. Legoux, Life Cycle Assessment of Using Powder and Liquid Precursors in Plasma Spraying: The Case of Yttria-Stabilized Zirconia, Surf. Coat. Technol., 2010, 205(2), p 668-673CrossRefGoogle Scholar
  12. 12.
    E.M. Cotler, D. Chen, and R.J. Molz, Pressure-Based Liquid Feed System for Suspension Plasma Spray Coatings, J. Therm. Spray Technol., 2011, 20(4), p 967-973CrossRefGoogle Scholar
  13. 13.
    Z. Tang, P. Hartell, G. Masindo, N. Bogdanovic, I. Yaroslavski, H. Kim, J. Restrepo, D. Ellsworth, and A. Burgess, Duration and Reliability of Axial Suspension Plasma Spray Process, Thermal Spray: Global Solutions for Future Application, DVS-Berichte, Vol. 264, 3-5 May 2010 (Singapore), DVS Media, Düsseldorf, 2010, p 203-206Google Scholar
  14. 14.
    N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296, p 280-284CrossRefGoogle Scholar
  15. 15.
    F. Ben-Ettouil, A. Denoirjean, A. Grimaud, G. Montavon, and P. Fauchais, Sub-Micrometer-Sized Y-PSZ Thermal Barrier Coatings Manufactured by Suspension Plasma Spraying: Process, Structure and Some Functional Properties, Thermal Spray 2009: Expanding Thermal Spray Performance to New Markets and Applications, B.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and G. Montavon, Eds., 4-7 May 2009 (Las Vegas), ASM International, Materials Park, 2009, p 193-199Google Scholar
  16. 16.
    K. VanEvery, M. Krane, R. Trice, H. Wang, W. Porter, M. Besser, D. Sordelet, J. Ilavsky, and J. Almer, Column Formation in Suspension Plasma-Sprayed Coatings and Resultant Thermal Properties, J. Therm. Spray Technol., 2011, 20(4), p 817-828CrossRefGoogle Scholar
  17. 17.
    Z. Tang, H. Kim, I. Yaroslavski, G. Masindo, Z. Celler, and D. Ellsworth, Novel Thermal Barrier Coatings Produced by Axial Suspension Plasma Spray, ITSC 2011, DVS-Berichte, Vol. 276, 27-29 Sep 2011 (Hamburg), DVS Media, Düsseldorf, 2011, p 571-575Google Scholar
  18. 18.
    H. Kaßner, R. Siegert, D. Hathiramani, R. Vaßen, and D. Stöver, Application of Suspension Plasma Spraying (SPS) for Manufacture of Ceramic Coatings, J. Therm. Spray Technol., 2008, 17(1), p 115-123CrossRefGoogle Scholar
  19. 19.
    R. Vaßen, H. Kaßner, G. Mauer, and D. Stöver, Suspension Plasma Spraying: Process Characteristics and Applications, J. Therm. Spray Technol., 2010, 19(1-2), p 219-225CrossRefGoogle Scholar
  20. 20.
    H. Kaßner, A. Stuke, R. Vaßen, and D. Stöver, Influence of Microstructure on Thermal and Optical Properties of Suspension Plasma Sprayed (SPS) and Atmospheric Plasma Sprayed (APS) Coatings, Thermal Spray Crossing Borders, E. Lugscheider, Ed., 2-4 June 2008 (Maastricht), DVS-Verlag, Düsseldorf, 2008, p 573-577Google Scholar
  21. 21.
    H. Kaßner, Theoretische und experimentelle Untersuchungen zum Plasmaspritzen mit nanoskaligen Suspensionen, PhD thesis, Ruhr-Universität-Bochum, 2009 (in German)Google Scholar
  22. 22.
    H. Kaßner, A. Stuke, M. Rödig, R. Vaßen, and D. Stöver, Influence of Porosity on Thermal Conductivity and Sintering in Suspension Plasma Sprayed Thermal Barrier Coatings, Ceram. Eng. Sci. Proc., 2009, 29(4), p 147-158CrossRefGoogle Scholar
  23. 23.
    M. Ahrens, S. Lampenscherf, R. Vaßen, and D. Stöver, Sintering and Creep Processes in Plasma-Sprayed Thermal Barrier Coatings, J. Therm. Spray Technol., 2004, 13(3), p 432-442CrossRefGoogle Scholar
  24. 24.
    J.W. Adams, R. Ruh, and K.S. Mazdiyasni, Young’s Modulus, Flexural Strength, and Fracture of Yttria-Stabilized Zirconia Versus Temperature, J. Am. Ceram. Soc., 1997, 80(4), p 903-908CrossRefGoogle Scholar

Copyright information

© ASM International 2012

Authors and Affiliations

  • Alexandre Guignard
    • 1
  • Georg Mauer
    • 1
  • Robert Vaßen
    • 1
  • Detlev Stöver
    • 1
  1. 1.Institut für Energie- und Klimaforschung (IEK-1), Forschungszentrum Jülich GmbHJülichGermany

Personalised recommendations