Journal of Thermal Spray Technology

, Volume 21, Issue 3–4, pp 435–440 | Cite as

Characteristics of Ceramic Coatings Made by Thin Film Low Pressure Plasma Spraying (LPPS-TF)

  • Andreas Hospach
  • Georg Mauer
  • Robert Vaßen
  • Detlev Stöver


The thin film low pressure plasma spray process (LPPS-TF) has been developed with the aim of efficient depositing uniform and thin coatings with large area coverage by plasma spraying. At high power input (~150 kW) and very low pressure (~100 Pa) the plasma jet properties change considerably and it is even possible to evaporate the powder feedstock material providing advanced microstructures of the deposits. This relatively new technique bridges the gap between conventional plasma spraying and physical vapor deposition. In addition, the resulting microstructures are unique and can hardly be obtained by other processes. In this paper, microstructures made by LPPS-TF are shown and the columnar layer growth by vapor deposition is demonstrated. In addition to the ceramic materials TiO2, Al2O3 or MgAl2O4, the focus of the research was placed on partially yttria-stabilized zirconia. Variations of the microstructures are shown and discussed concerning potential coating applications.


cluster deposition columnar EB-PVD physical vapor deposition PS-PVD thermal barrier coating yttria stabilized zirconia, YSZ 


  1. 1.
    J.L. Dorier, M. Gindrat, C. Hollenstein, M. Loch, A. Refke, A. Sailto, and G. Barbezat, Plasma Jet Properties in a New Spraying Process at Low Pressure for Large Area Thin Film Deposition, International Thermal Spray Conference, C.C. Berndt, K.A. Khor, and E.F. Lugscheider, Ed. (Singapore), ASM International, Materials Park, 2001Google Scholar
  2. 2.
    E. Muehlberger and P. Meyer, LPPS—Thin Film Processes: Overview of Origin and Future Possibilities. International Thermal Spray Conference, B. Marple, M. Hyland, Y.-C. Lau, C.-Y. Li, R. Lima, and G. Montavon, Ed. (Las Vegas), ASM International, Materials Park, 2009Google Scholar
  3. 3.
    A. Refke, M. Gindrat, and K. von Niessen, LPPS Thin Film: A Hybrid Coating Technology between Thermal Spray and PVD for Functional Thin Coatings and Large Area Applications, International Thermal Spray Conference, B.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and G. Montavon, Ed. (Beijing), ASM International, Materials Park, 2007Google Scholar
  4. 4.
    K. von Niessen, M. Gindrat, and A. Refke, Vapor Phase Deposition Using Plasma Spray-PVD, J. Therm. Spray Technol., 2010, 19(1), p 502-509CrossRefGoogle Scholar
  5. 5.
    M. Gindrat, A. Refke, and R. Schmid, Process Characterization of LPPS Thin Film Processes with Optical Diagnostics, International Thermals Spray Conference, B.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and G. Montavon, Ed. (Beijing), ASM International, Materials Park, 2007Google Scholar
  6. 6.
    A. Hospach, U. Maier, and R. Vaßen, Development of a Thermally Sprayed Insulation Layer for SOFCs, European SOFC Forum, U. Bossel, Ed., European Fuel Cell Forum, Luzern, 2008Google Scholar
  7. 7.
    B. Pateyron, M.-F. Elchinger, G. Delluc, and P. Fauchais, Thermodynamic and Transport Properties of Ar-H2 and Ar-He Plasma Gases Used for Spraying at Atmospheric Pressure. I: Properties of the Mixtures, Plasma Chem. Plasma Process., 1992, 12(4), p 421-448CrossRefGoogle Scholar
  8. 8.
    J. Aubreton, M.F. Elchinger, P. Fauchais, V. Rat, and P. Andre, Thermodynamic and Transport Properties of a Ternary Ar-H2-He Mixture Out of Equilibrium up to 30000 K at Atmospheric Pressure, J. Phys. D, 2004, 37(16), p 2232-2246CrossRefGoogle Scholar
  9. 9.
    A. Refke, D. Hawley, J. Doesburg, and R.K. Schmid, LPPS Thin Film Technology for the Application of TBC Systems, International Thermal Spray Conference, E.F. Lugscheider, Ed. (Basel), DVS-Verlag, Düsseldorf, 2005Google Scholar
  10. 10.
    A. Hospach, G. Mauer, R. Vaßen, and D. Stöver, Columnar-Structured Thermal Barrier Coatings (TBCs) by Thin Film Low-Pressure Plasma Spraying (LPPS-TF), J. Therm. Spray Technol., 2011, 20, p 116-120CrossRefGoogle Scholar
  11. 11.
    R. Vaßen, D. Hathiramani, J. Mertens, V.A.C. Haanappel, and I.C. Vinke, Manufacturing of High Performance Solid Oxide Fuel Cells (SOFCs) with Atmospheric Plasma Spraying (APS), Surf. Coat. Technol., 2007, 202(3), p 499-508CrossRefGoogle Scholar
  12. 12.
    T. Yoshida, Toward a New Era of Plasma Spray Processing, Pure Appl. Chem., 2006, 78(6), p 1093-1107CrossRefGoogle Scholar
  13. 13.
    A. Shinozawa, K. Eguchi, M. Kambara, and T. Yoshida, Feather-Like Structured YSZ Coatings at Fast Rates by Plasma Spray Physical Vapor Deposition, Proc. Therm. Spray Conf., 2009, 2009, p 1140-1145Google Scholar
  14. 14.
    K. Wada, N. Yamaguchi, and H. Matsubara, Crystallographic Texture Evolution in ZrO2-Y2O3 Layers Produced by Electron Beam Physical Vapor Deposition, Surf. Coat. Technol., 2004, 184(1), p 55-62CrossRefGoogle Scholar
  15. 15.
    U. Schulz, B. Saruhan, K. Fritscher, and C. Leyens, Review on Advanced EB-PVD Ceramic Topcoats for TBC Applications, Int. J. Appl. Ceram. Technol., 2004, 1(4), p 302-315CrossRefGoogle Scholar
  16. 16.
    M. Matsumoto, K. Wada, N. Yamaguchi, T. Kato, and H. Matsubara, Effects of Substrate Rotation Speed During Deposition on the Thermal Cycle Life of Thermal Barrier Coatings Fabricated by Electron Beam Physical Vapor Deposition, Surf. Coat. Technol., 2008, 202(15), p 3507-3512CrossRefGoogle Scholar
  17. 17.
    J.R. Nicholls, K.J. Lawson, A. Johnstone, and D.S. Rickerby, Methods to Reduce the Thermal Conductivity of EB-PVD TBCs, Surf. Coat. Technol., 2002, 151-152, p 383-391CrossRefGoogle Scholar
  18. 18.
    D.E. Wolfe, J. Singh, R.A. Miller, J.I. Eldridge, and D.-M. Zhu, Tailored Microstructure of EB-PVD 8YSZ Thermal Barrier Coatings with Low Thermal Conductivity and high Thermal Reflectivity for Turbine Applications, Surf. Coat. Technol., 2005, 190(1), p 132-149CrossRefGoogle Scholar
  19. 19.
    A. Flores Renteria, B. Saruhan, U. Schulz, H.-J. Raetzer-Scheibe, J. Haug, and A. Wiedenmann, Effect of Morphology on Thermal Conductivity of EB-PVD PYSZ TBCs, Surf. Coat. Technol., 2006, 201(6), p 2611-2620CrossRefGoogle Scholar
  20. 20.
    M.J. Kelly, D.E. Wolfe, J. Singh, J.I. Eldridge, D.-M. Zhu, and R.A. Miller, Thermal Barrier Coatings Design with Increased Reflectivity and Lower Thermal Conductivity for High-Temperature Turbine Applications, Int. J. Appl. Ceram. Technol., 2006, 3(2), p 81-93CrossRefGoogle Scholar
  21. 21.
    G.M. Ingo and T. de Caro, Origin of Darkening in 8 wt% Yttria-Zirconia Plasma-Sprayed Thermal Barrier Coatings, J. Am. Ceram. Soc., 1991, 74(2), p 381-386CrossRefGoogle Scholar
  22. 22.
    L. Xie, M. Dorfman, A. Patel, and I. Aguilar, Factors Affecting the Appearance of Air Plasma Sprayed Thermal Barrier Coatings, International Thermal Spray Conference, B.R. Marple, M.M. Hyland, Y.-C. Lau, R.S. Lima, and J. Voyer, Ed. (Seattle), ASM International, Materials Park, 2006Google Scholar
  23. 23.
    L.-M. Berger, Titanium Oxide—New Opportunities for an Established Coating Material, International Thermal Spray Conference, E.F. Lugscheider, and D. von Hofe, Ed. (Osaka), DVS-Verlag, , Düsseldorf, 2004Google Scholar

Copyright information

© ASM International 2012

Authors and Affiliations

  • Andreas Hospach
    • 1
  • Georg Mauer
    • 1
  • Robert Vaßen
    • 1
  • Detlev Stöver
    • 1
  1. 1.Institute of Energy and Climate Research (IEK-1)Forschungszentrum Jülich GmbHJülichGermany

Personalised recommendations