Journal of Thermal Spray Technology

, Volume 21, Issue 2, pp 344–354 | Cite as

HVOF Spraying of Fe-Based MMC Coatings with In Situ Formation of Hard Particles by Hot Isostatic Pressing

  • A. Röttger
  • S. L. Weber
  • W. Theisen
  • B. Rajasekaran
  • R. Vaßen


Thick (2-3 mm) Fe-base coatings with admixed ferrotitanium (Fe30Ti70) were applied to austenitic steel by a high-velocity oxy-fuel process (HVOF). Hot-isostatic pressing (HIP) was carried out to the decrease porosity and to increase the material strength, wear resistance, and adhesive bond strength of the deposited coating to the substrate material. SEM and XRD investigations confirmed the formation of hard titanium carbide (TiC) particles during HIP treatment as a result of strong carbon diffusion out of the metal matrix and into the Fe30Ti70 particles. The mechanical and wear properties of the densified coatings were investigated by means of shear tests, hardness measurements, and abrasive wear tests. A comparison of the coatings in the as-sprayed and the HIPed state showed a large increase in the wear resistance due to in situ TiC formation.


Fe-base HIP HVOF in situ TiC MMC 



Financial support of this project from the German Research Foundation (DFG Project No. TH531/6-1; VA163/4-1) is gratefully acknowledged.


  1. 1.
    X. Qi, E. Aust, N. Eigen, F. Gärtner, and R. Bormann, Abrasive Wear Mechanisms of VPS- and HVOF-Sprayed TiC-Ni Based Nanocrystalline Coatings, Materialwissenschaften Werkstofftechnik, 2004, 35(10-11), p 779-784CrossRefGoogle Scholar
  2. 2.
    S. Pahlavanyali, A. Sabour, and M. Hirbod, The Hot Corrosion Behaviour of HVOF Sprayed MCrAlX Coatings Under Na2SO4 (+NaCl) Salt Films, Mater. Corros., 2003, 54(9), p 687-693CrossRefGoogle Scholar
  3. 3.
    S. Saeidi, K.T. Voisey, and D.G. McCartney, The Effect of Heat Treatment on the Oxidation Behavior of HVOF and VPS CoNiCrAlY Coatings, J. Therm. Spray Technol., 2009, 18(2), p 209-216CrossRefGoogle Scholar
  4. 4.
    H. Berns and W. Theisen, Ferrous Materials: Steel and Cast Iron, 1st ed., Springer, Berlin, 2008Google Scholar
  5. 5.
    H. Berns, Hartlegierungen und Hartverbundwerkstoffe, Springer, Berlin, 1997Google Scholar
  6. 6.
    E. Floer and U. Szieslo, Plasmapulver-Auftragschweißen von Schieberelementen für den Kernkraft, 8. Fachtagung - Verschleißschutz von Bauteilen durch Auftagschweißen Schweißtechnische Lehr- und Versuchsanstallt Halle GmbH, S. Keitel and M. Ströfer, Eds., 2010, p 14-21Google Scholar
  7. 7.
    T. Nishizawa and K. Ishida, The Co (Cobalt) System, J. Phase Equilib., 1983, 4(4), p 387-390Google Scholar
  8. 8.
    B. Rajasekaran, G. Mauer, R. Vassen, A. Röttger, S. Weber, and W. Theisen, Coating of High-Alloyed, Ledeburitic Cold Work Tool Steel Applied by HVOF Spraying, J. Therm. Spray Technol., 2010, 19(3), p 642-649CrossRefGoogle Scholar
  9. 9.
    B. Rajasekaran, G. Mauer, R. Vaßen, A. Röttger, S. Weber, and W. Theisen, Development of Cold Work Tool Steel Based-MMC Coating Using HVOF Spraying and Its HIP Densification Behaviour, Surf. Coat. Technol., 2010, 204(23), p 3858-3863CrossRefGoogle Scholar
  10. 10.
    Y. Shimizu, K. Sugiura, K. Sakaki, and A. Devasanapathi, An Attempt to Improve the Deposition Efficiency of Al2O3 Coating by HVOF Spraying Thermal Spray—Surface Engineering Via Applied Research, Proceedings of the 1st International Thermal Spray Conference, 8-11 May 2000 (Montreal, Canada), 2000, p 181-186Google Scholar
  11. 11.
    B. Wielage, S. Schuberth, and T. Grund, Thermal Spraying of Vanadium Carbide Reinforced Iron Based Coatings, Mat.-wiss. u. Werkstofftech., 2008, 39(1), p 48-51CrossRefGoogle Scholar
  12. 12.
    H. Berns and B. Wewers, Development of an Abrasion Resistant Steel Composite with In Situ TiC Particles, Wear, 2001, 251(1-12), p 1386-1395, 13th International Conference on Wear of Materials, October 2001Google Scholar
  13. 13.
    H. Berns, A. Saltykova, A. Röttger, and D. Heger, Wear Protection by Fe-B-C Hard Phases, Steel Res. Int., doi:10.1002/srin.201000255
  14. 14.
    B. Wewers and H. Berns, Verschleißbeständige MMC mit in situ Karbiden, Materialwissenschaft Werkstofftechnik, 2003, 34(5), p 453-463CrossRefGoogle Scholar
  15. 15.
    H. Berns and A. Saltykova, Wear Resistance of In Situ MMC Produced by Supersolidus Liquid Phase Sintering (SLPS), Wear, 2009, 267, p 1791-1797CrossRefGoogle Scholar
  16. 16.
    Z. Wang, X. Zhou, and G. Zhao, Microstructure and Formation Mechanism of In Situ TiC-TiB2/Fe Composite Coating, Trans. Nonferrous Met. Soc. China, 2008, 18(4), p 831-835CrossRefGoogle Scholar
  17. 17.
    ASM Handbook, Vol. 3, Alloy Phase Diagrams, ASM International, Materials Park, OH, 1992Google Scholar
  18. 18.
    T.B. Sercombe, Sintering of Freeformed Maraging Steel with Boron Additions, Mater. Sci. Eng., 2003, A363, p 242-252Google Scholar
  19. 19.
    T.B. Sercombe and G.B. Schaffer, The Sintering of an Fe-Cr-Ni-B-C Powder, Mater. Sci. Eng. A, 2010, 528(2), p 751-755CrossRefGoogle Scholar
  20. 20.
    H. Edris, D.G. McCartney, and A.J. Sturgeon, Microstructural Characterization of High Velocity Oxy-Fuel Sprayed Coatings of Inconel 625, J. Mater. Sci., 1997, 32, p 863-872CrossRefGoogle Scholar
  21. 21.
    A. Röttger, Entwicklung neuer Schichtverbunde auf Fe-Basis gegen Abrasion, 2011, ISBN:978-3-943063-00-4Google Scholar
  22. 22.
    B. Xiao, J.D. Xing, J. Feng, C.T. Zhou, Y.F. Li, W. Su, X.J. Xie, and Y.H. Cheng, A Comparative Study of Cr7C3, Fe3C and Fe2B in Cast Iron Both From Ab Initio Calculations and Experiments, J. Phys. D: Appl. Phys., 2009, 42, doi:10.1088/0022-3727/42/11/1154415
  23. 23.
    W.F. Gale and T.C. Totemeier, Smithells Metals Reference Book, ASM International/Elsevier, Materials Park/Amsterdam, 2004Google Scholar
  24. 24.
    R. Kieffer and F. Benesovsky, Hartstoffe, Springer-Verlag, Wien, 1963Google Scholar
  25. 25.
    H. Holleck and G. Petzow, Binäre und ternäre Carbid- und Nitridsysteme der Übergangsmetalle. Metallkundlich-Technische Reihe 6, Gebrüder Borntraeger, Berlin/Stuttgart, 1984Google Scholar
  26. 26.
    B. Wewers, “Verschleißbeständige Metallmatrix-Composites (MMC) mit in situ TiC-Partikeln,” Phd-thesis, Ruhr-Universität, Bochum, 2002Google Scholar
  27. 27.
    R.A. Cutler, Engineering Properties of Borides, ASTM Ceramic and Glasses: Engineered Materials Handbook, Vol 4, S.J. Schneider, Jr., Ed., ASM-International, Materials Park, 1991, p 787-803 Google Scholar
  28. 28.
    A.K. Shurin and N.A. Razumova, Quasiternary System Fe-TiC-TiB2, Poroshkovaya Metallurgiya, 1978, 204(12), p 60-64Google Scholar
  29. 29.
    H. Schmidt, G. Borchardt, C. Schmalzried, R. Telle, S. Weber, and H. Scherrer, Self-Diffusion of Boron in TiB2, J. Appl. Phys., 2003, 93(2), p 907-911CrossRefGoogle Scholar
  30. 30.
    S.V. Divinski, F. Hisker, T. Wilger, M. Friesel, and C. Herzig, Tracer Diffusion of Boron in α-Ti and γ-TiAl, Intermetallics, 2008, 16(2), p 148-155CrossRefGoogle Scholar
  31. 31.
    H.J. Höfler and R.S. Averback, Diffusion of Boron in Nanocrystalline Iron: A New Type of Diffusion Kinetics: Type C, Philos. Mag. Lett., 1993, 68(2), p 99-105CrossRefGoogle Scholar
  32. 32.
    M.A. Kristhal and E.M. Grinberg, Change in the Microstructure of Iron During Diffusion of Boron, Metallovedenie I, Thermicheskaya Obrabotka Metallov, 1974, 4, p 2-6Google Scholar
  33. 33.
    R.B. McLellan and C. Ko, The Diffusion of Boron in f.c.c. Iron, J. Phys. Chem. Solids, 1993, 54(4), p 465-468CrossRefGoogle Scholar
  34. 34.
    W. Wang, S. Zhang, and X. He, Diffusion of Boron in Alloys, Acta Metall. Mater., 1995, 43(4), p 1693-1699CrossRefGoogle Scholar
  35. 35.
    P.E. Busby, M.E. Warga, and C. Wells, Diffusion and Solubility of Boron in Iron and Steel, J. Met., 1953, 5, p 1463-1468Google Scholar

Copyright information

© ASM International 2012

Authors and Affiliations

  • A. Röttger
    • 1
  • S. L. Weber
    • 1
    • 2
  • W. Theisen
    • 1
  • B. Rajasekaran
    • 3
  • R. Vaßen
    • 3
  1. 1.Lehrstuhl WerkstofftechnikRuhr-Universität BochumBochumGermany
  2. 2.Helmholtz-Zentrum Berlin für Materialien und Energie GmbHBerlinGermany
  3. 3.Institute of Materials Synthesis and Processing (IEF-1), Institute of Energy Research, Research CentreJuelichGermany

Personalised recommendations