Journal of Thermal Spray Technology

, Volume 21, Issue 3–4, pp 651–658 | Cite as

Comparison of Isolated Indentation and Grid Indentation Methods for HVOF Sprayed Cermets

  • Jiří NohavaEmail author
  • Petr Haušild
  • Šárka Houdková
  • Radek Enžl


This paper compares the results of two approaches of instrumented indentation for characterization of mechanical properties of HVOF coatings. Three types of HVOF sprayed coatings (Cr3C2-NiCr, WC-Co, (Ti, Mo)(C,N)-NiCo) were investigated by the means of isolated nanoindentation and grid indentation methods. The results of the isolated indentation revealed hardness and elastic modulus of the individual phases in very good agreement with the corresponding bulk material. The grid indentation method, based on statistical evaluation of a large number of indentations, was influenced by the carbide-matrix interface, which gave rise to a third peak apart from the two peaks corresponding to the carbides and metallic matrix. As a consequence, the bimodal Gaussian fit was insufficient and a trimodal fit had to be used. The results extracted from low load grid nanoindentations were quite close to the results of isolated indentations whereas higher load grid nanoindentation revealed overall properties of the coating.


Instrumented indentation HVOF Hardness Elastic modulus Gaussian distribution 



This research was carried out in the frame of the GACR P108/12/1872 and Czech Ministry of Education No. MSM 4771868401 research projects.


  1. 1.
    J.S. Field and M.V. Swain, A Simple Predictive Model for Spherical Indentation, J. Mater. Res., 1993, 8(2), p 297-306CrossRefGoogle Scholar
  2. 2.
    M.V. Swain and J. Mencik, Mechanical Property Characterization of Thin Films Using Spherical Tipped Indenters, Thin Solid Films, 1994, 253, p 204-211CrossRefGoogle Scholar
  3. 3.
    A.C. Fischer-Cripps, Nanoindentation, Springer, New York, 2002, 197 ppGoogle Scholar
  4. 4.
    W.C. Oliver and G.M. Pharr, Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, J. Mater. Res., 2004, 19(1), p 3-20CrossRefGoogle Scholar
  5. 5.
    N. Margadant, J. Neuenschwander, S. Stauss, H. Kaps, A. Kulkarni, J. Matejicek, and G. Roessler, Impact of Probing Volume from Different Mechanical Measurement Methods on Elastic Properties of Thermally Sprayed Ni-Based Coatings on a Mesoscopic Scale, Surf. Coat. Technol., 2006, 200, p 2805-2820CrossRefGoogle Scholar
  6. 6.
    O. Racek and C.C. Berndt, Mechanical Property Variations Within Thermal Barrier Coatings, Surf. Coat. Technol., 2007, 202, p 362-369CrossRefGoogle Scholar
  7. 7.
    L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, 2nd ed., Wiley, West Sussex, 2008, 626 ppGoogle Scholar
  8. 8.
    H. Herman, Plasma-Sprayed Coatings, Sci. Am., 1988, 259, p 112-117CrossRefGoogle Scholar
  9. 9.
    O. Kovařík and J. Siegl, Microstructure and Fracture Morphology of Thermally Sprayed Refractory Metals and Ceramics, Strength of Materials, 2008, 1, p 89-92Google Scholar
  10. 10.
    O. Kovařík, J. Siegl, and Z. Procházka, Fatigue Behavior of Bodies with Thermally Sprayed Metallic and Ceramic Deposits, J. Therm. Spray Technol., 2008, 17(5), p 25-32Google Scholar
  11. 11.
    R. Schwetzke and H. Kreye, Microstructure and Properties of Tungsten Carbide Coatings Sprayed with Various High Velocity Oxygen Fuel Spray System, J. Therm. Spray Technol., 1999, 8(3), p 433-439CrossRefGoogle Scholar
  12. 12.
    Š. Houdková, F. Zahálka, M. Kašparová, and L.-M. Berger, Tribological Behavior of Thermally Sprayed Coatings at Elevated Temperatures, Thermal Spray 2008: Crossing Borders, E. Lugscheider, Ed., June 2-4, 2008 (Maastricht, The Netherlands), ASM International, 2008, p 1485-1490Google Scholar
  13. 13.
    N.X. Randall, M. Vandamme, and F.-J. Ulm, Nanoindentation Analysis as a Two-Dimensional Tool for Mapping the Mechanical Properties of Complex Surfaces, J. Mater. Res., 2009, 24(3), p 679-690CrossRefGoogle Scholar
  14. 14.
    G. Constantinides, K.S.R. Chandran, F.-J. Ulm, and K.J. Van Vliet, Grid Indentation Analysis of Composite Microstructure and Mechanics: Principles and Validation, Mater. Sci. Eng. A, 2006, 430, p 189-202CrossRefGoogle Scholar
  15. 15.
    A. Rico, J. Gomez-Garcia, C.J. Munez, P. Posa, and V. Utrilla, Mechanical Properties of Thermal Barrier Coatings After Isothermal Oxidation: Depth Sensing Indentation Analysis, Surf. Coat. Technol., 2009, 203, p 2307-2314CrossRefGoogle Scholar
  16. 16.
    M.G. Gee, B. Roebuck, P. Lindahl, and H.-O. Andren, Constituent Phase Nanoindentation of WC/Co and Ti(C, N) Hard Metals, Mat. Sci. Eng. A, 1996, 209, p 128-136CrossRefGoogle Scholar
  17. 17.
    P. Haušild, J. Nohava, P. Pilvin, Characterization of Strain-Induced Martensite in a Metastable Austenitic Steel by Nanoindentation. Strain, 2010, 47, doi: 10.1111/j.1475-1305.2010.00748.x
  18. 18.
    L.-M. Berger, M. Woydt, S. Zimmermann, H. Keller, G. Schwier, R. Enžl, and S. Thiele, Tribological Behavior of HVOF-Sprayed Cr3C2-NiCr and TiC-Based Coatings Under High-Temperature Dry Sliding Conditions, Thermal Spray 2004: Advances in Technology and Applications, May 10-12, 2004 (Osaka, Japan), ASM International, 2004, p 468-477Google Scholar
  19. 19.
    L.-M. Berger, Hardmetals as Thermal Spray Coatings, Powder Metallurgy, 2007, 50(3), p 205-214CrossRefGoogle Scholar
  20. 20.
    S. Zimmermann, and H. Kreye, Chromium Carbide Coatings Produced with Various HVOF Spray Systems, Thermal Spray: Practical Solutions for Engineering Problems, C.C. Berndt, Ed., October 7-11, 1996 (Cincinnati, OH), ASM International, 1996, p 147-152Google Scholar
  21. 21.
    S. Matthews, M. Hyland, B. James, and T. Levi, Isothermal oxidation of Cr3C2-NiCr Coatings Sprayed by High Velocity Techniques, International Thermal Spray Conference 2002, E. Lugscheider and C.C. Berndt, Ed., March 4-6, 2002 (Essen, Germany), DVS Germany, 2002, p 698-704Google Scholar
  22. 22.
    L.-M. Berger, S. Zimmermann, H. Keller, G. Schwier, S. Thiele, M. Nebelung, and R. Enžl, Microstructure and Properties of HVOF-Sprayed TiC-Based Coatings, Thermal Spray 2003: Advancing the Science & Applying the Technology, B.R. Marple, C. Moreau, Ed., May 5-8, 2003 (Orlando, FL), ASM International, 2003, p 793-799Google Scholar
  23. 23.
    W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(6), p 1564-1583CrossRefGoogle Scholar
  24. 24.
    Instrumented Indentation Test for Hardness and Materials Parameters, ISO 14577-2:2002, p 1-25Google Scholar
  25. 25.
    W. Lengauer, Transition Metal Carbides, Nitrides and Carbonitrides, Handbook of Ceramic Hard Materials, vol. 1, Wiley-VCH, Weinheim, 2000, p 202-252 Google Scholar
  26. 26.
    G. Bolelli, V. Cannillo, L. Lusvarghi, and S. Ricco, Mechanical and Tribological Properties of Electrolytic Hard Chrome and HVOF Sprayed Coatings, Surf. Coat. Technol., 2006, 200, p 2995-3009CrossRefGoogle Scholar
  27. 27.
    J. Nohava, B. Bonferroni, G. Bolelli, and L. Lusvarghi, Interesting Aspects of Indentation and Scratch Methods for Characterization of Thermally-Sprayed Coatings, Surf. Coat. Technol., 2010, 205, p 1127-1131CrossRefGoogle Scholar
  28. 28.
    G. Bolelli, B. Bonferroni, H. Koivuluoto, L. Lusvarghi, and P. Vuoristo, Depth-Sensing Indentation for Assessing the Mechanical Properties of Cold-Sprayed Ta, Surf. Coat. Technol., 2010, 205, p 2209-2214CrossRefGoogle Scholar
  29. 29.
    Š. Houdková, O. Blahová, F. Zahálka, and M. Kašparová, The Instrumented Indentation Study of HVOF-Sprayed Hardmetal Coatings. J. Therm. Spray. Technol., published online 27th July 2011, doi: 10.1007/s11666-0119677-2
  30. 30.
    F. Petit, V. Vandeneede, and F. Cambier, Relevance of Instrumented Micro-Indentation for the Assessment of Hardness and Young’s Modulus of Brittle Materials, Mater. Sci. Eng. A, 2007, 456, p 252-260CrossRefGoogle Scholar
  31. 31.
    W.D. Nix and H. Gao, Indentation Size Effect in Crystalline Materials: A Law for Strain Gradient Plasticity, J. Mech. Phys. Solids, 1998, 46, p 41-425CrossRefGoogle Scholar
  32. 32.
    K. Durst, B. Backes, O. Franke, and M. Göken, Indentation Size Effect in Metallic Materials: Modeling Strength From Pop-in to Macroscopic Hardness Using Geometrically Necessary Dislocations, Acta Mater., 2006, 54, p 2547-2555CrossRefGoogle Scholar
  33. 33.
    P. Chivavibul, M. Watanabe, S. Kuroda, and K. Shinoda, Effect of Carbide Size and Co Content on the Microstructure and Mechanical Properties of HVOF-Sprayed WC-Co Coatings, Surf. Coat. Technol., 2007, 202, p 509-521CrossRefGoogle Scholar
  34. 34.
    J.G. La Barbera-Sosa, Y.Y. Santana, M.H. Staia, D. Chicot, J. Lesage, J. Caro, G. Mesmacque, and E.S. Puchi-Cabrera, Microstructural and Mechanical Characterization of Ni-Base Thermal Spray Coatings Deposited by HVOF, Surf. Coat. Technol., 2008, 202, p 4552-4559CrossRefGoogle Scholar
  35. 35.
    R. Mušálek, J. Matějíček, M. Vilémová, and O. Kovařík, Non-Linear Mechanical Behavior of Plasma Sprayed Alumina Under Mechanical and Thermal Loading, J. Therm. Spray Technol., 2010, 19(1-2), p 422-428CrossRefGoogle Scholar

Copyright information

© ASM International 2012

Authors and Affiliations

  • Jiří Nohava
    • 1
    Email author
  • Petr Haušild
    • 2
  • Šárka Houdková
    • 3
  • Radek Enžl
    • 4
  1. 1.CSM InstrumentsPeseuxSwitzerland
  2. 2.Department of Materials, Faculty of Nuclear Sciences and Physical EngineeringCzech Technical University in PraguePraha 1Czech Republic
  3. 3.Research and Testing Institute PlzeňPlzeňCzech Republic
  4. 4.Flame Spray TechnologiesDuivenThe Netherlands

Personalised recommendations