Journal of Thermal Spray Technology

, Volume 21, Issue 3–4, pp 695–705 | Cite as

Spraying of Metallic Powders by Hybrid Gas/Water Torch and the Effects of Inert Gas Shrouding

  • T. Kavka
  • J. Matějíček
  • P. Ctibor
  • M. Hrabovský
Peer-Reviewed

Abstract

A hybrid DC arc plasma torch, combining water and gas stabilization, offers a high flexibility in plasma characteristics. These can be controlled in a wide range by the torch operational parameters, such as arc current and secondary gas flow rate. In this study, their influence on plasma spraying of tungsten and copper was investigated. To suppress the in-flight oxidation of the metals, inert gas shrouding was applied. In-flight particle diagnostics and analysis of free-flight particles and coatings was performed for spraying experiments in the open atmosphere and with argon shrouding. Both in-flight particle behavior and coating properties were found to be sensitive to the torch parameters. The application of shrouding was found to affect particle in-flight parameters, reduce the oxide content in the coatings and generally improve their properties, such as thermal conductivity. However, a different degree of these effects was observed for copper and tungsten.

Keywords

copper gas shroud hybrid water-gas plasma torch plasma facing materials plasma spraying tungsten 

References

  1. 1.
    S. Sampath, X. Jiang, A. Kulkarni, J. Matějíček, D.L. Gilmore, and R.A. Neiser, Development of Process Maps for Plasma Spray: Case Study for Molybdenum, Mater. Sci. Eng. A, 2003, 348(1-2), p 54-66CrossRefGoogle Scholar
  2. 2.
    V.V. Sobolev and J.M. Guilemany, Oxidation of Coatings in Thermal Spraying, Mater. Lett., 1998, 37(4-5), p 231-235CrossRefGoogle Scholar
  3. 3.
    M. Jankovic, J. Mostaghimi, and V. Pershin, Design of a New Nozzle for Direct Current Plasma Guns with Improved Spraying Parameters, J. Therm. Spray Technol., 2000, 9(1), p 114-120CrossRefGoogle Scholar
  4. 4.
    K. Voleník, F. Hanousek, P. Chráska, J. Ilavský, and K. Neufuss, In-Flight Oxidation of High-Alloy Steels During Plasma Spraying, Mater. Sci. Eng. A, 1999, 272, p 199-206CrossRefGoogle Scholar
  5. 5.
    G. Mauer, R. Vassen, and D. Stöver, Controlling the Oxygen Contents in Vacuum Plasma Sprayed Metal Alloy Coatings, Surf. Coat. Technol., 2007, 201(8), p 4796-4799CrossRefGoogle Scholar
  6. 6.
    J. Matějíček, P. Chráska, and J. Linke, Thermal Spray Coatings for Fusion Applications—Review, J. Therm. Spray Technol., 2007, 16(1), p 64-83CrossRefGoogle Scholar
  7. 7.
    J. Matějíček and R. Mušálek, Processing and Properties of Plasma Sprayed W + Cu Composites, Thermal Spray Crossing Borders, Proceedings of International Thermal Spray Conference, E. Lugscheider, Ed., (Maastricht), DVS Verlag, 2008, p 1412-1417Google Scholar
  8. 8.
    J. Matějíček, V. Weinzettl, E. Dufková, V. Piffl, and V. Peřina, Plasma Sprayed Tungsten-Based Coatings and their Usage in Edge Plasma Region of Tokamaks, Acta Technica CSAV, 2006, 51(2), p 179-191Google Scholar
  9. 9.
    M. Hrabovský, V. Kopecký, V. Sember, T. Kavka, O. Chumak, and M. Konrád, Properties of Hybrid Water/Gas DC Arc Plasma Torch, IEEE Trans. Plasma Sci., 2006, 34(4), p 1566-1575CrossRefGoogle Scholar
  10. 10.
    C. Moreau, P. Gougeon, M. Lamontagne, V. Lacasse, G. Vaudreuil, and P. Cielo, On-line control of the Plasma Spraying Process by Monitoring the Temperature, Velocity and Trajectory of In-Flight Particles. Proceedings of 7th National Thermal Spray Conference (Boston), ASM International Materials Park, 1994, p 431-436Google Scholar
  11. 11.
    T. Kavka, J. Matějíček, P. Ctibor, A. Mašláni, and M. Hrabovský, Plasma Spraying of Copper by Hybrid Water-Gas DC Arc Plasma Torch, J. Therm. Spray Technol., 2011, 20(4), p 760-774CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Y.R. Niu, D.Y. Hu, H. Ji, and X.B. Zheng, In-Flight Behaviors and Properties of Plasma-Sprayed Tungsten Coatings, Materials Science Forum, 2010, 658, p 13-16CrossRefGoogle Scholar
  14. 14.
    T. Kavka, A. Mašláni, V. Kopecký, M. Hrabovský, and O. Chumak, Interaction of Thermal Plasma Jet Generated by Hybrid Gas-Water Torch with the Surrounding, Proceedings of ICPIG-29, Institute of Physics (IoP), July 12–17, 2009, Cancun, MexicoGoogle Scholar
  15. 15.
    T. Kavka, A. Mašláni, V. Sember, V. Kopecky, O. Chumak, and M. Hrabovsky, Experimental investigation of fully turbulent plasma jet and its interaction with ambient air, Proc. ISPC-18,(ed.) K. Tachibana, O. Takai, K. Ono, T. Shirafuji, International Plasma Chemistry Society, August 26-31, 2007, Kyoto, Japan, pp 1-4Google Scholar
  16. 16.
    J. Matějíček, O. Chumak, M. Konrád, M. Oberste-Berghaus, and M. Lamontagne, The Influence of Spraying Parameters on In-Flight Characteristics of Tungsten Particles and the Resulting Splats Sprayed by Hybrid Water-Gas Stabilized Plasma Torch, Thermal Spray Connects: Explore Its Surfacing Potential, E. Lugscheider, Ed., May 2–4, 2005 (Basel, Switzerland), DVS, 2005, p 594-599Google Scholar

Copyright information

© ASM International 2011

Authors and Affiliations

  • T. Kavka
    • 1
  • J. Matějíček
    • 2
  • P. Ctibor
    • 2
  • M. Hrabovský
    • 1
  1. 1.Institute of Plasma PhysicsThermal PlasmaPragueCzech Republic
  2. 2.Institute of Plasma PhysicsMaterials EngineeringPragueCzech Republic

Personalised recommendations