Advertisement

Journal of Thermal Spray Technology

, Volume 21, Issue 3–4, pp 550–560 | Cite as

Comparison of Oxidation and Microstructure of Warm-Sprayed and Cold-Sprayed Titanium Coatings

  • KeeHyun KimEmail author
  • Seiji Kuroda
  • Makoto Watanabe
  • RenZhong Huang
  • Hirotaka Fukanuma
  • Hiroshi Katanoda
Peer-Reviewed

Abstract

Thick titanium coatings were prepared by the warm spraying (WS) and cold spraying (CS) processes to investigate the oxidation and microstructure of the coating layers. Prior to the coating formations, the temperature and velocity of in-flight titanium powder particles were numerically calculated. Significant oxidation occurred in the WS process using higher gas temperature conditions with low nitrogen flow rate, which is mixed to the flame jet of a high velocity oxy-fuel (HVOF) spray gun in order to control the temperature of the propellant gas. Oxidation, however, decreased strikingly as the nitrogen flow rate increased. In the CS process using nitrogen or helium as a propellant gas, little oxidation was observed. Even when scanning electron microscopy or an x-ray diffraction method did not detect oxides in the coating layers produced by WS using a high nitrogen flow rate or by CS using helium, the inert gas fusion method revealed minor increases of oxygen content from 0.01 to 0.2 wt.%. Most of the cross-sections of the coating layers prepared by conventional mechanical polishing looked dense. However, the cross-sections prepared by an ion-milling method revealed the actual microstructures containing small pores and unbounded interfaces between deposited particles.

Keywords

cold spraying ion milling microstructure oxidation warm spraying x-ray diffraction 

Notes

Acknowledgments

This research was supported by Nanotechnology Network program and World Premier International Research Center Initiative on Materials Nanoarchitectonics, MEXT, Japan, and KAKENHI 19360335.

References

  1. 1.
    N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296(5566), p 280-284CrossRefGoogle Scholar
  2. 2.
    L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, 2nd ed., Wiley, New York, 2008CrossRefGoogle Scholar
  3. 3.
    A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, and V. Fomin, Cold Spray Technology, Elsevier, Amsterdam, 2007Google Scholar
  4. 4.
    V.K. Champagne, The Cold Spray Materials Deposition Process, CRC Press, Boca Raton, 2007CrossRefGoogle Scholar
  5. 5.
    S. Kuroda, J. Kawakita, M. Watanabe, and H. Katanoda, Warm Spraying—A Novel Coating Process Based on the High-Velocity Impact of Solid Particles, Sci. Technol. Adv. Mater., 2008, 9(3), p 033002CrossRefGoogle Scholar
  6. 6.
    H. Fukanuma, N. Ohno, B. Sun, and R. Huang, In-Flight Particle Velocity Measurements with DPV-2000 in Cold Spray, Surf. Coat. Technol., 2006, 201(5), p 1935-1941CrossRefGoogle Scholar
  7. 7.
    K. Kim, M. Watanabe, J. Kawakita, and S. Kuroda, Grain Refinement in a Single Titanium Powder Particle Impacted at High Velocity, Scripta Mater., 2008, 59(7), p 768-771CrossRefGoogle Scholar
  8. 8.
    K. Kim and S. Kuroda, Amorphous Oxide Film Formed by Dynamic Oxidation During Kinetic Spraying of Titanium at High Temperature and Its Role in Subsequent Coating Formation, Scripta Mater., 2010, 63(2), p 215-218CrossRefGoogle Scholar
  9. 9.
    K. Kim, M. Watanabe, and S. Kuroda, Thermal Softening Effect on the Deposition Efficiency and Microstructure of Warm Sprayed Metallic Powder, Scripta Mater., 2009, 60(8), p 710-713CrossRefGoogle Scholar
  10. 10.
    H. Katanoda, T. Kiriaki, T. Tachibanaki, J. Kawakita, S. Kuroda, and M. Fukuhara, Mathematical Modeling and Experimental Validation of the Warm Spray (Two-Stage HVOF) Process, J. Therm. Spray Technol., 2009, 18(3), p 401-410CrossRefGoogle Scholar
  11. 11.
    R.Z. Huang and H. Fukanuma, The Influence of Spray Conditions on Deposition Characteristics of Aluminum Coatings in Cold Spraying, Thermal Spray 2009: Proceedings of the International Thermal Spray Conference, B.R. Marple, M.M. Hyland, Y.C. Lau, C.J. Li, R.S. Lima, and G. Montavon, Ed., 2009, p 279-284Google Scholar
  12. 12.
    K. Kim, M. Watanabe, J. Kawakita, and S. Kuroda, Effects of Temperature of In-Flight Particles on Bonding and Microstructure in Warm-Sprayed Titanium Deposits, J. Therm. Spray Technol., 2009, 18(3), p 392-400CrossRefGoogle Scholar
  13. 13.
    K. Kim, M. Watanabe, S. Kuroda, and N. Kawano, Observation of High Resolution Microstructures in Thermal Sprayed Coatings and Single Deposited Splats Using Ion Beam Milling, Mater. Trans., 2011, 52(3), p 439-446CrossRefGoogle Scholar
  14. 14.
    G. Kleinstein, Mixing in Turbulent Axially Symmetric Free Jets, J. Spacecr., 1964, 1(4), p 403-408CrossRefGoogle Scholar
  15. 15.
    P.O. Witze, Centerline Velocity Decay of Compressible Free Jets, AIAA J., 1974, 12(4), p 417-418CrossRefGoogle Scholar
  16. 16.
    C.K.W. Tam, J.A. Jackson, and J.M. Seiner, A Multiple-Scales Model of the Shock-Cell Structure of Imperfectly Expanded Supersonic Jets, J. Fluid Mech., 1985, 153, p 123-149CrossRefGoogle Scholar
  17. 17.
    S. Kuroda, M. Watanabe, K. Kim, and H. Katanoda, Current Status and Future Prospects of Warm Spray Technology, J. Therm. Spray Technol., 2011, 20(4), p 653-676CrossRefGoogle Scholar
  18. 18.
    J. Pattison, S. Celotto, A. Khan, and W. O’Neill, Standoff Distance and Bow Shock Phenomena in the Cold Spray Process, Surf. Coat. Technol., 2008, 202(8), p 1443-1454CrossRefGoogle Scholar
  19. 19.
    R. Boyer, G. Welsch, and E.W. Collings, Materials Properties Handbook: Titanium Alloys, ASM International, Materials Park, OH, 1994Google Scholar
  20. 20.
    H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394CrossRefGoogle Scholar
  21. 21.
    T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54(3), p 729-742CrossRefGoogle Scholar
  22. 22.
    T. LaGrange, G.H. Campbell, P.E.A. Turchi, and W.E. King, Rapid Phase Transformation Kinetics on a Nanoscale: Studies of the α → β Transformation in Pure, Nanocrystalline Ti Using the Nanosecond Dynamic Transmission Electron Microscope, Acta Mater., 2007, 55(15), p 5211-5224CrossRefGoogle Scholar
  23. 23.
    J. Kawakita, S. Kuroda, T. Fukushima, H. Katanoda, K. Matsuo, and H. Fukanuma, Dense Titanium Coatings by Modified HVOF Spraying, Surf. Coat. Technol., 2006, 201(3-4), p 1250-1255CrossRefGoogle Scholar
  24. 24.
    C.K.S. Moy, J. Cairney, G. Ranzi, M. Jahedi, and S.P. Ringer, Investigating the Microstructure and Composition of Cold Gas-Dynamic Spray (CGDS) Ti Powder Deposited on Al 6063 Substrate, Surf. Coat. Technol., 2010, 204(23), p 3739-3749CrossRefGoogle Scholar
  25. 25.
    C.-J. Li and W.-Y. Li, Deposition Characteristics of Titanium Coating in Cold Spraying, Surf. Coat. Technol., 2003, 167(2-3), p 278-283CrossRefGoogle Scholar
  26. 26.
    T. Marrocco, D. McCartney, P. Shipway, and A. Sturgeon, Production of Titanium Deposits by Cold-Gas Dynamic Spray: Numerical Modeling and Experimental Characterization, J. Therm. Spray Technol., 2006, 15(2), p 263-272CrossRefGoogle Scholar
  27. 27.
    K. Sakaki, T. Tajima, H. Li, S. Shinkai, and Y. Shimizu, Influence of Substrate Conditions and Traverse Speed on Cold Sprayed Coatings, Thermal Spray 2004: Advances in Technology and Applications, 2004, p 358-362Google Scholar
  28. 28.
    V. Shukla, G.S. Elliott, B.H. Kear, and L.E. McCandlish, Hyperkinetic Deposition of Nanopowders by Supersonic Rectangular Jet Impingement, Scripta Mater., 2001, 44(8-9), p 2179-2182CrossRefGoogle Scholar
  29. 29.
    W.Y. Li, C. Zhang, H.T. Wang, X.P. Guo, H.L. Liao, C.J. Li, and C. Coddet, Significant Influences of Metal Reactivity and Oxide Films at Particle Surfaces on Coating Microstructure in Cold Spraying, Appl. Surf. Sci., 2007, 253(7), p 3557-3562CrossRefGoogle Scholar
  30. 30.
    S.H. Zahiri, C.I. Antonio, and M. Jahedi, Elimination of Porosity in Directly Fabricated Titanium via Cold Gas Dynamic Spraying, J. Mater. Process. Technol., 2009, 209(2), p 922-929CrossRefGoogle Scholar
  31. 31.
    H.-R. Wang, B.-R. Hou, J. Wang, Q. Wang, and W.-Y. Li, Effect of Process Conditions on Microstructure and Corrosion Resistance of Cold-Sprayed Ti Coatings, J. Therm. Spray Technol., 2008, 17(5), p 736-741CrossRefGoogle Scholar
  32. 32.
    T. Novoselova, P. Fox, R. Morgan, and W. O’Neill, Experimental Study of Titanium/Aluminium Deposits Produced by Cold Gas Dynamic Spray, Surf. Coat. Technol., 2006, 200(8), p 2775-2783CrossRefGoogle Scholar
  33. 33.
    K.H. Kim, M. Watanabe, K. Mitsuishi, J. Kawakita, T. Wu, and S. Kuroda, Microstructure Observation on the Interface Between Warm Spray Deposited Titanium Powder and Steel Substrate, Thermal Spray 2008: Proceedings of the International Thermal Spray Conference, 2008, CD-ROM, p 1277-1282Google Scholar
  34. 34.
    K. Kim, M. Watanabe, K. Mitsuishi, K. Iakoubovskii, and S. Kuroda, Impact Bonding and Rebounding Between Kinetically Sprayed Titanium Particle and Steel Substrate Revealed by High-Resolution Electron Microscopy, J. Phys. D Appl. Phys., 2009, 42(6), p 065304CrossRefGoogle Scholar
  35. 35.
    G.K. Williamson and W.H. Hall, X-Ray Line Broadening from Filed Aluminium and Wolfram, Acta Metall., 1953, 1(1), p 22-31CrossRefGoogle Scholar
  36. 36.
    B.D. Cullity, Elements of X-Ray Diffraction, 2nd ed., Addison-Wesley, Menlo Park, CA, 1978Google Scholar
  37. 37.
    K.P. Misra, R.K. Shukla, A. Srivastava, and A. Srivastava, Blueshift in Optical Band Gap in Nanocrystalline Zn1−xCaxO Films Deposited by Sol-Gel Method, Appl. Phys. Lett., 2009, 95(3), p 031901-031903CrossRefGoogle Scholar
  38. 38.
    K. Kim, S. Kuroda, and M. Watanabe, Microstructural Development and Deposition Behavior of Titanium Powder Particles in Warm Spraying Process: From Single Splat to Coating, J. Therm. Spray Technol., 2010, 19(6), p 1244-1254CrossRefGoogle Scholar
  39. 39.
    K. Balani, A. Agarwal, S. Seal, and J. Karthikeyan, Transmission Electron Microscopy of Cold Sprayed 1100 Aluminum Coating, Scripta Mater., 2005, 53(7), p 845-850CrossRefGoogle Scholar
  40. 40.
    M. Fukumoto, M. Mashiko, M. Yamada, and E. Yamaguchi, Deposition Behavior of Copper Fine Particles onto Flat Substrate Surface in Cold Spraying, J. Therm. Spray Technol., 2010, 19(1), p 89-94CrossRefGoogle Scholar
  41. 41.
    P. Waldner, Modelling of Oxygen Solubility in Titanium, Scripta Mater., 1999, 40(8), p 969-974CrossRefGoogle Scholar

Copyright information

© ASM International 2011

Authors and Affiliations

  • KeeHyun Kim
    • 1
    • 2
    Email author
  • Seiji Kuroda
    • 1
  • Makoto Watanabe
    • 1
  • RenZhong Huang
    • 3
  • Hirotaka Fukanuma
    • 3
  • Hiroshi Katanoda
    • 4
  1. 1.National Institute for Materials Science (NIMS)TsukubaJapan
  2. 2.University of BirminghamBirminghamUnited Kingdom
  3. 3.Plasma Giken Co. Ltd.OosatoJapan
  4. 4.Kagoshima UniversityKorimotoJapan

Personalised recommendations