Advertisement

Journal of Thermal Spray Technology

, Volume 20, Issue 4, pp 760–774 | Cite as

Plasma Spraying of Copper by Hybrid Water-Gas DC Arc Plasma Torch

  • T. KavkaEmail author
  • J. Matějíček
  • P. Ctibor
  • A. Mašláni
  • M. Hrabovský
Peer Reviewed

Abstract

Water-stabilized DC arc plasma torches offer a good alternative to common plasma sources used for plasma spraying applications. Unique properties of the generated plasma are determined by a specific plasma torch construction. This article is focused on a study of the plasma spraying process performed by a hybrid torch WSP500®-H, which combines two principles of arc stabilization—water vortex and gas flow. Spraying tests with copper powder have been carried out in a wide range of plasma torch parameters. First, analyses of particle in-flight behavior for various spraying conditions were done. After, particles were collected in liquid nitrogen, which enabled analyses of the particle in-flight oxidation. A series of spraying tests were carried out and coatings were analyzed for their microstructure, porosity, oxide content, mechanical, and thermal properties.

Keywords

copper coatings hybrid water-gas torch metallic particle oxidation plasma spraying 

Notes

Acknowledgments

The authors gratefully acknowledge Grant Agency of the Czech Republic for financial support of the present research under project No. P205/11/2070.

References

  1. 1.
    F.-W. Bach, A. Laarmann, and T. Wenz, Ed., Modern Surface Technology, Wiley-VCH Verlag GmbH, Weinheim, 2006Google Scholar
  2. 2.
    P. Fauchais, G. Montavon, and G. Bertrand, Bertrand, From Powders to Thermally Sprayed Coatings, J. Therm. Spray Thechnol., 2010, 19(1-2), p 56-80CrossRefGoogle Scholar
  3. 3.
    P. Fauchais and A. Vardelle, Thermal Plasma, IEEE Trans. Plasma Sci., 1997, 25(6), p 1258-1280CrossRefGoogle Scholar
  4. 4.
    O.P. Solonenko, Ed., Thermal Plasma Torches and Technologies, Vol 1, Cambridge Int. Sci., Cambridge, MA, 2001Google Scholar
  5. 5.
    J.F. Coudert, C. Chazelas, D. Rigot, and V. Rat, From Transferred Arc to Plasma Torches High Temp, Mater. Proc., 2005, 9(2), p 173-194Google Scholar
  6. 6.
    M. Hrabovsky, M. Konrad, V. Kopecky, and V. Sember, Processes and Properties of Electric Arc Stabilized by Water Vortex, IEEE Trans. Plasma Sci., 1997, 25(5), p 833-839CrossRefGoogle Scholar
  7. 7.
    M. Hrabovský, Water-Stabilized Plasma Generators, Pure Appl. Chem., 1998, 70(6), p 1157-1162CrossRefGoogle Scholar
  8. 8.
    M. Hrabovsky, Generation of Thermal Plasmas in Liquid and Hybrid DC Arc Torches, Pure Appl. Chem., 2002, 74(3), p 429-433CrossRefGoogle Scholar
  9. 9.
    P. Chráska and M. Hrabovský, An Overview of Water Stabilized Plasma Guns and their Applications, Proc. Int. Thermal Spray Conf. and Exhib., Orlando, FL, 1992, p 81-86Google Scholar
  10. 10.
    J. Matějíček, P. Chráska, and J. Linke, Thermal Spray Coatings for Fusion Applications—Review, J. Therm. Spray Technol., 2007, 16(1), p 64-83CrossRefGoogle Scholar
  11. 11.
    J. Matějíček, O. Chumak, M. Konrád, M. Oberste-Berghaus, and M. Lamontagne, The Influence of Spraying Parameters on In-Flight Characteristics of Tungsten Particles and the Resulting Splats Sprayed by Hybrid Water-Gas Stabilized Plasma Torch, Proc. ITCS-2005, Basel, SwitzerlandGoogle Scholar
  12. 12.
    V. Rat and J.F. Coudert, A simplified Analytical Model for DC plasma Spray Torch: Influence of Gas Properties and Experimental Conditions, J. Phys. D Appl. Phys., 2006, 39, p 4799-4807CrossRefGoogle Scholar
  13. 13.
    M. Hrabovský, V. Kopecký, O. Chumak, T. Kavka, and M. Konrád, Properties of Plasma Jet Generated in Hybrid Gas/Water Torch Under Reduced Pressures, High Temp. Mater. Proc., 2004, 8(4), p 575-583CrossRefGoogle Scholar
  14. 14.
    M. Hrabovský, M. Konrád, V. Kopecký, and V. Sember, Properties of Water Stabilized Plasma Torches, Thermal Plasma Torches and Technologies, Vol 1, O.P. Solonenko, Ed., Cambridge Int. Sci., Cambridge, MA, 2000, p 242-266 Google Scholar
  15. 15.
    T. Kavka, J. Gregor, O. Chumak, and M. Hrabovský, Effect of Arc Power and Gas Flow Rate on Properties of Plasma Jet Under Reduced Pressures, Czechoslov. J. Phys., 2004, 54, p C753-C758CrossRefGoogle Scholar
  16. 16.
    S. Marx, A. Paul, A. Kohler, and G. Huttl, Cold Spraying: Innovative Layers for New Applications, J. Therm. Spray Technol., 2006, 15(2), p 177-183CrossRefGoogle Scholar
  17. 17.
    M. Schroeder, Machining and Mechanical Engraving of Copper Thermal-Sprayed Coatings, J. Therm. Spray Technol., 1998, 7(3), p 325-327CrossRefGoogle Scholar
  18. 18.
    T. Junquera, M. Fouaidy, H. Gassot, J. Lesrel, S. Bousson, and J.C. Lescornet, Superconducting RF Cavity Stiffening With Thick Plasma Sprayed Copper Coating, Adv. Cryog. Eng., 2002, 47, p 523-530Google Scholar
  19. 19.
    O. Chumak, M. Hrabovský, T. Kavka, and V. Kopecký, Electric Probe Investigation of Arc Anode Region in Plasma Torch, High Temp. Mater. Proc., 2006, 10, p 515-524CrossRefGoogle Scholar
  20. 20.
    M. Hrabovský, O. Chumak, V. Kopecký, M. Konrád, and T. Kavka, Effect of Pressure on Behavior of Anode Attachment of DC Arc Plasma Torch, High Temp. Mater. Proc., 2005, 9, p 391-399CrossRefGoogle Scholar
  21. 21.
    T. Kavka, O. Chumak, V. Sember, and M. Hrabovský, Processes in Gerdien arc generated by hybrid gas-water torch, Proc. ICPIG-XXVIII, 15-20.07.2007, Cancun, MexicoGoogle Scholar
  22. 22.
    V. Sember and A. Mašláni, A Simple Spectroscopic Method for Determining the Temperature in H2O-Ar Thermal Plasma Jet, Temp. Mater. Proc., 2009, 13(2), p 217-228CrossRefGoogle Scholar
  23. 23.
    V. Srinivasan, M. Friis, A. Vaidya, T. Streibl, and S. Sampath, Particle Injection in Direct Current Air Plasma Spray: Salient Observations and Optimization Strategies, Plasma. Chem. Plasma Process., 2007, 27(5), p 609-623CrossRefGoogle Scholar
  24. 24.
    C. Moreau, P. Gougeon, M. Lamontagne, V. Lacasse, G. Vaudreuil, and P. Cielo, On-Line Control of the Plasma Spraying Process by Monitoring the Temperature, Velocity and Trajectory of In-Flight Particles, Proc. 7th Natl Thermal Spray Conf. (Boston, MA, USA), p 431-437Google Scholar
  25. 25.
    K. Neufuss, P. Chráska, B. Kolman, S. Sampath, and Z. Travníček, Properties of Plasma-Sprayed Freestanding Ceramic Parts, J. Therm. Spray Technol., 1997, 6(4), p 434-438CrossRefGoogle Scholar
  26. 26.
    V. Harok and K. Neufuss, Elastic and Inelastic Effects in Compression in Plasma-Sprayed Ceramic Coatings, J. Therm. Spray Technol., 2001, 10(1), p 126-132CrossRefGoogle Scholar
  27. 27.
    K. Voleník, F. Hanoušek, P. Chráska, J. Ilavský, and K. Neufuss, In-Flight Oxidation of High-Alloy Steels During Plasma Spraying, Mater. Sci. Eng., 1999, A272, p 199-206Google Scholar
  28. 28.
    S. Sampath, X. Jiang, A. Kulkarni, J. Matéjíček, D.L. Gilmore, and R.A. Neiser, Development of Process Maps for Plasma Spray: Case Study for Molybdenum, Mater. Sci. Eng. A, 2003, 348(1-2), p 54-66CrossRefGoogle Scholar
  29. 29.
    M. Vardelle, A. Vardelle, A.C. Leger, P. Fauchais, and D. Gobin, Influence of Particle Parameters at Impact on Splat Formation and Solidification in Plasma Spraying Processes, J. Therm. Spray Technol., 1995, 4(1), p 50-58CrossRefGoogle Scholar
  30. 30.
    P. Fauchais, M. Fukumoto, A. Vardelle, and M. Vardelle, Knowledge Concerning Splat Formation: An Invited Review, J. Therm. Spray Technol., 2004, 13(3), p 337-360CrossRefGoogle Scholar
  31. 31.
    J.P. Neumann, T. Zhong, and Y.A. Chang, The Cu-O (Copper-Oxygen) System, J. Phase Equilib., 1984, 5(2), p 136-140Google Scholar
  32. 32.
    J. Matějíček, B. Kolman, J. Dubský, K. Neufuss, N. Hopkins, and J. Zwick, Alternative Methods for Determination of Composition and Porosity in Abradable Materials, Mater. Charact., 2006, 57(1), p 17-29CrossRefGoogle Scholar
  33. 33.
    I. Sevostianov and M. Kachanov, Elastic and Conductive Properties of Plasma-Sprayed Ceramic Coatings in Relation to Their Microstructure: An Overview, J. Therm. Spray Technol., 2009, 18(5-6), p 822-834CrossRefGoogle Scholar
  34. 34.
    J. Matějíček et al., The Influence Of Powder Injection Parameters on the In-Flight Behavior and Properties Of Coatings Sprayed by WSP Torch with Improved Plasma Stabilization, J. Therm. Spray Technol. (paper in preparation)Google Scholar
  35. 35.
    J. Matějíček and R. Mušálek, Processing and Properties of Plasma Sprayed W + Cu Composites, Thermal Spray Crossing Borders, E. Lugscheider, Ed., DVS Verlag, Maastricht, Dusseldorf, 2008, p 1412-1417 Google Scholar
  36. 36.
    N. Sakakibara, H. Tsukuda, and A. Notomi, The Splat Morphology of Plasma Sprayed Particle and the Relation to Coating Property, Thermal Spray: Surface Engineering via Applied Research, Proc. Int. Thermal Spray Conf., C.C. Berndt (Montreal), ASM International, 2000, p 753-758Google Scholar
  37. 37.
    J. Matějíček, F. Zahálka, J. Bensch, W. Chi, and J. Sedláček, Copper-Tungsten Composites Sprayed by HVOF, J. Therm. Spray Technol., 2008, 17(2), p 177-180CrossRefGoogle Scholar
  38. 38.
    T. Stoltenhoff, C. Borchers, F. Gдrtner, and H. Kreye, Microstructures and Key Properties of Cold-Sprayed and Thermally Sprayed Copper Coatings, Surf. Coat. Technol., 2006, 200, p 4947-4960CrossRefGoogle Scholar
  39. 39.
    C. Li and B. Sun, Microstructure and Property of Micro-Plasma-Sprayed Cu Coating, Mater. Sci. Eng., 2004, A379, p 92-101Google Scholar

Copyright information

© ASM International 2011

Authors and Affiliations

  • T. Kavka
    • 1
    Email author
  • J. Matějíček
    • 2
  • P. Ctibor
    • 2
  • A. Mašláni
    • 1
  • M. Hrabovský
    • 1
  1. 1.Thermal Plasma DepartmentInstitute of Plasma PhysicsPragueCzech Republic
  2. 2.Materials Engineering DepartmentInstitute of Plasma PhysicsPragueCzech Republic

Personalised recommendations