Journal of Thermal Spray Technology

, Volume 20, Issue 1–2, pp 154–159 | Cite as

The Structure and Properties of Plasma Sprayed Iron Oxide Doped Manganese Cobalt Oxide Spinel Coatings for SOFC Metallic Interconnectors

  • Jouni Puranen
  • Juha Lagerbom
  • Leo Hyvärinen
  • Mikko Kylmälahti
  • Olli Himanen
  • Mikko Pihlatie
  • Jari Kiviaho
  • Petri Vuoristo
Peer Reviewed

Abstract

Manganese cobalt oxide spinel doped with Fe2O3 was studied as a protective coating on ferritic stainless steel interconnects. Chromium alloying causes problems at high operation temperatures in such oxidizing conditions where chromium compounds evaporate and poison the cathode active area, causing the degradation of the solid oxide fuel cell. In order to prevent chromium evaporation, these interconnectors need a protective coating to block the chromium evaporation and to maintain an adequate electrical conductivity. Thermal spraying is regarded as a promising way to produce dense and protective layers. In the present work, the ceramic Mn-Co-Fe oxide spinel coatings were produced by using the atmospheric plasma spray process. Coatings with low thickness and low amount of porosity were produced by optimizing deposition conditions. The original spinel structure decomposed because of the fast transformation of solid-liquid-solid states but was partially restored by using post-annealing treatment.

Keywords

interconnect Mn-Co spinel plasma spraying SOFC 

References

  1. 1.
    J. Jeffrey and W. Fergus, Lanthanum Chromite-Based Materials for Solid Oxide Fuel Cell Interconnects, Solid State Ion., 2004, 171, p 1-15CrossRefGoogle Scholar
  2. 2.
    W.Z. Zhu and S.C. Deevi, Development of Interconnect Materials for Solid Oxide Fuel Cells, Mater. Sci. Eng., 2003, A348, p 227-243Google Scholar
  3. 3.
    H. Kurokawa, P.Y. Hou, X. Chen, C. Jacobson, L. DeJonghe, and S.J. Visco, Effect of Protective Coatings for Alloy Interconnect on Oxidation and Cr Vaporization, Materials Science and Technology, Vol. 1, Materials and Systems, 2006, p 208-216Google Scholar
  4. 4.
    W.Z. Zhu and S.C. Deevi, Opportunity of Metallic Interconnects for Solid Oxide Fuel Cells: A Status on Contact Resistance, Mater. Res. Bull., 2003, 38, p 957-972CrossRefGoogle Scholar
  5. 5.
    J.W. Fergus, Metallic Interconnects for Solid Oxide Fuel Cells, Mater. Sci. Eng., 2005, 397, p 271-283CrossRefGoogle Scholar
  6. 6.
    F. Chen, E. Sun, J. Yamanis, J. Hawkes, J. Smeggil, S. Warrier, and J.-W Kim, Cr Poisoning Effect for Solid Oxide Fuel Cells, Materials Science and Technology, Vol. 1, Materials and Systems, 2006Google Scholar
  7. 7.
    J.Y. Kim, N.L. Canfield, L.A. Chick, K.D. Meinhardt, and V.L. Sprenkle, Chromium Poisoning Effects on Various Cathodes, Ceram. Eng. Sci. Proc., 2008, 26(4), p 129-138CrossRefGoogle Scholar
  8. 8.
    H.W. Nie, T.L. Wen, and H.Y. Tu, Protection Coatings for Planar Solid Oxide Fuel Cell Interconnect Prepared by Plasma Spraying, Mater. Res. Bull., 2003, 38, p 1531-1536CrossRefGoogle Scholar
  9. 9.
    J. Lagerbom, U. Kanerva, A.-P. Nikkilä, T. Varis, M. Kylmälahti, and P. Vuoristo, Phase Stability and Structure of Conductive Perovskite Ceramic Coatings by Thermal Spraying, Proceedings of the International Thermal Spray Conference, 2-4 June 2008 (Maastricht), CD-ROMGoogle Scholar
  10. 10.
    F. Changjing, S. Kening, and Z. Derui, Effects of La0.8Sr0.2Mn(Fe)O3 Protective Coatings on SOFC Metallic Interconnects, J. Rare Earths, 2006, 24, p 320-326CrossRefGoogle Scholar
  11. 11.
    D.P. Lim, D.S. Lum, J.S. Oh, and I.W. Lyo, Influence of Post-Treatment on the Contact Resistance of Plasma-Sprayed La0.8Sr0.2MnO3 Coatings on SOFC Metallic Interconnector, Surf. Coat. Technol., 2005, 200, p 1248-1251CrossRefGoogle Scholar
  12. 12.
    Y. Larring and T. Norby, Spinel and Perovskite Functional Layers Between Plansee Metallic Interconnect (Cr-5 wt% Fe-1 wt% Y2O3) and Ceramic (La0.85Sr0.15)0.91MnO3 Cathode Materials for Solid Oxide Fuel Cell, J. Electrochem. Soc., 2000, 47(9), p 3251-3256CrossRefGoogle Scholar
  13. 13.
    E. Garcia and T.W Coyle, Thermal Spray Deposition of Fuel Cell Interconnect Material, Proceedings of the International Thermal Spray Conference, 15-18 May 2006 (Seattle), CD-ROMGoogle Scholar
  14. 14.
    S.D. Park, S. Kumar, S.C. Lee, and C. Lee, Effects of Silver Addition on Mechanical Properties of Plasma Sprayed SOFC Interconnect Layer, J. Therm. Spray Technol., 2008, 17, p 708-714CrossRefGoogle Scholar
  15. 15.
    S.Y. Hwang, J.H. Kim, B.G. Seong, and H. Yang, SOFC Interconnect Coating Using HVOF Process, Proceedings of the International Thermal Spray Conference, 15-18 May 2006 (Seattle), CD-ROMGoogle Scholar
  16. 16.
    R.H. Henne, T. Franco, and R. Ruckdäschel, High Velocity DC-VPS for Diffusion Protecting Barrier Layer in SOFCs, Proceedings of the International Thermal Spray Conference, 15-18 May 2006 (Seattle), CD-ROMGoogle Scholar
  17. 17.
    K. Fujita, K. Ogasawara, Y. Matsuzaki, and T. Sakarai, Prevention of SOFC Cathode Degradation in Contact with Cr-Containing Alloy, J. Power Sources, 2004, 131, p 261-269CrossRefGoogle Scholar
  18. 18.
    W.J. Quadakkers, H. Greiner, M. Hänsel, A. Pattanaik, A.S. Khanna, and W. Malléner, Compatibility of Perovskite Contact Layers Between Cathode and Metallic Interconnector Plates of SOFCs, Solid State Ion., 1996, 91, p 66-67CrossRefGoogle Scholar
  19. 19.
    Z. Yang, G. Xia, and J.W. Stevenson, Mn1.5Co1.5O4 Spinel Protection Layers on Ferritic Stainless Steels for SOFC Interconnect Applications, Electrochem. Solid State Lett., 2005, 8(3), p 168-170CrossRefGoogle Scholar
  20. 20.
    X. Chen, P.Y. Hou, C.P. Jacobson, S.T. Visco, and L.C. De Jonghe, Protective Coatings on Stainless Steel Interconnect for SOFCs: Oxidation Kinetics and Electrical Properties, Solid State Ion., 2005, 176, p 425-433CrossRefGoogle Scholar
  21. 21.
    Z. Yang, G.-G. Xia, X.-H. Li, and J.W. Stevenson (Mn, Co)3O4 Spinel Coatings on Ferritic Stainless Steels for SOFC Interconnect Applications, Int. J. Hydrogen Energy, 2007, 32, p 3648-3654CrossRefGoogle Scholar
  22. 22.
    T. Kiefer, M. Zahid, F. Tietz, D. Stöver, and H.-R. Zerfass, Electrical Conductivity and Thermal Expansion Coefficients of Spinel in the Series MnCo2-xFexO4 for Application as a Protective Layer in SOFC, Proceedings of the 26th Riso International Symposium on Materials Science, Denmark, Roskilde, 2005Google Scholar
  23. 23.
    P.E. Gannona, V.I. Gorokhovsky, M.C. Deibert, R.J. Smith, A. Kayani, P.T. White, S. Sofie, Z. Yang, D. McCready, S. Visco, C. Jacobson, and H. Kurokawa, Enabling Inexpensive Metallic Alloys as SOFC Interconnects: An Investigation into Hybrid Coating Technologies to Deposit Nanocomposite Functional Coatings on Ferritic Stainless Steels, Int. J. Hydrogen Energy, 2007, 32, p 3672-3681CrossRefGoogle Scholar
  24. 24.
    J. Wu, Y. Jiang, C. Johnson, and X. Liu, DC Electrodeposition of Mn-Co Alloys on Stainless Steels for SOFC Interconnect Application, J. Power Sources, 2008, 177, p 376-385CrossRefGoogle Scholar
  25. 25.
    Material Data Sheet No. 4046 for Crofer 22 APU, ThyssenKrupp VDMGoogle Scholar

Copyright information

© ASM International 2010

Authors and Affiliations

  • Jouni Puranen
    • 1
  • Juha Lagerbom
    • 2
  • Leo Hyvärinen
    • 1
  • Mikko Kylmälahti
    • 1
  • Olli Himanen
    • 3
  • Mikko Pihlatie
    • 3
  • Jari Kiviaho
    • 3
  • Petri Vuoristo
    • 1
  1. 1.Department of Materials ScienceTampere University of TechnologyTampereFinland
  2. 2.VTT, Research Centre of FinlandTampereFinland
  3. 3.VTT, Research Centre of FinlandEspooFinland

Personalised recommendations