Advertisement

Journal of Thermal Spray Technology

, Volume 20, Issue 1–2, pp 121–131 | Cite as

Effect of Chemical Compositions and Surface Morphologies of MCrAlY Coating on Its Isothermal Oxidation Behavior

  • Yong Li
  • Chang-Jiu LiEmail author
  • Qiang Zhang
  • Lu-Kuo Xing
  • Guan-Jun Yang
Peer Reviewed

Abstract

Chemical composition and surface morphology of MCrAlY coatings are factors which influence the oxidation behavior and the thermal durability of thermal barrier coatings. In this study, Cold-sprayed Ni20Cr10AlY and Ni23Co20Cr8.5Al4.0Ta0.6Y coatings with polished surfaces were employed to study the effect of composition on the oxidation behavior. The cold-sprayed MCrAlY coatings at the as-sprayed and shot-peened surface conditions, along with the low pressure plasma-sprayed MCrAlY coating with sputters adhered weakly on the surface, were employed to investigate the effects of surface morphologies of MCrAlY coatings on their oxidation behavior. Cold-sprayed Ni20Cr10AlY coating exhibited a two-stage oxidation behavior and a higher TGO growth rate than that of the cold-sprayed Ni23Co20Cr8.5Al4.0Ta0.6Y coating at the rapid growth stage. After 10-h oxidation, the TGO on the as-cold-sprayed coating surface was mainly constituted by Al2O3, while the TGO on the coating surface attached with sputters was composed of Al2O3 and Cr/Ni-oxides. After 500-h oxidation, Cr2O3 and porous spinel appeared in the TGO on the surface of the as-cold-sprayed coatings with different compositions. The growth of Cr/Ni-oxides was attributed to the Al depletion. The content of spinel decreased on the cold-sprayed NiCrAlY with a shot-peened surface compared with the as-sprayed coating.

Keywords

cold spray composition low pressure plasma spraying MCrAlY coating oxidation behavior surface morphology 

Notes

Acknowledgments

This study was financially supported by the National Basic Research Program of China (No. 2007CB707702), and the National Science Fund for Distinguished Young Scholars (No. 50725101).

References

  1. 1.
    A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, and F.S. Pettit, Mechanisms Controlling the Durability of Thermal Barrier Coatings, Prog. Mater. Sci., 2001, 46(5), p 505-553CrossRefGoogle Scholar
  2. 2.
    W.J. Brindley, Thermal Barrier Coatings, J. Therm. Spray Technol., 1996, 5(4), p 379-380CrossRefGoogle Scholar
  3. 3.
    T. Strangman, D. Raybould, A. Jameel, and W. Baker, Damage Mechanisms, Life Prediction, and Development of EB-PVD Thermal Barrier Coatings for Turbine Airfoils, Surf. Coat. Technol., 2007, 202, p 658-664CrossRefGoogle Scholar
  4. 4.
    Q. Zhang, C.-J. Li, Y. Li, S.-L. Zhang, X.-R. Wang, G.-J. Yang, and C.-X. Li, Thermal Failure of Nanostructured Thermal Barrier Coatings with Cold-Sprayed Nanostructured NiCrAlY Bond Coat, J. Therm. Spray Technol., 2008, 17(5-6), p 838-845CrossRefGoogle Scholar
  5. 5.
    S. Ahmaniemia, P. Vuoristoa, T. Mäntylä, C. Gualco, A. Bonadei, and R. Di Maggio, Thermal Cycling Resistance of Modified Thick Thermal Barrier Coatings, Surf. Coat. Technol., 2005, 190, p 378-387CrossRefGoogle Scholar
  6. 6.
    T. Vogt, B.A. Hunter, and J. Thornton, Structural Evolution of Thermal-Sprayed Yttria-Stabilized ZrO2 Thermal Barrier Coatings with Annealing—A Neutron Diffraction Study, J. Am. Ceram. Soc., 2001, 84(3), p 678-680CrossRefGoogle Scholar
  7. 7.
    S. Bose and J.D. Marcin, Thermal Barrier Coating Experience in Gas Turbine Engines at Pratt & Whitney, J. Therm. Spray Technol., 1997, 6(1), p 99-103CrossRefGoogle Scholar
  8. 8.
    C.G. Levi, Emerging Materials and Processes for Thermal Barrier Systems, Curr. Opin. Solid State Mater. Sci., 2004, 8, p 77-91CrossRefGoogle Scholar
  9. 9.
    A. Gil, V. Shemet, R. Vassen, M. Subanovic, J. Toscano, D. Naumenko, L. Singheiser, and W.J. Quadakkers, Effect of Surface Condition on the Oxidation Behavior of MCrAlY coatings, Surf. Coat. Technol., 2006, 201, p 3824-3828CrossRefGoogle Scholar
  10. 10.
    A. Hesnawi, H.-F. Li, Z.-H. Zhou, S.-K. Gong, and H.-B. Xu, Effect of Surface Condition During Pre-Oxidation Treatment on Isothermal Oxidation Behavior of MCrAlY Bond Coat Prepared by EB-PVD, Surf. Coat. Technol., 2007, 201, p 6793-6796CrossRefGoogle Scholar
  11. 11.
    N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 12(296), p 280-284CrossRefGoogle Scholar
  12. 12.
    K.W. Schlichting, N.P. Padture, E.H. Jordan, and M. Gell, Failure Modes in Plasma-Sprayed Thermal Barrier Coatings, Mater. Sci. Eng. A-Struct., 2003, 342, p 120-130CrossRefGoogle Scholar
  13. 13.
    F.-H. Yuan, Z.-X. Chen, Z.-W. Huang, Z.-G. Wang, and S.-J. Zhu, Oxidation Behavior of Thermal Barrier Coatings with HVOF and Detonation-Sprayed NiCrAlY Bondcoats, Corros. Sci., 2008, 50, p 1608-1617CrossRefGoogle Scholar
  14. 14.
    F. Tang and J.M. Schoenung, Local Accumulation of Thermally Grown Oxide in Plasma-Sprayed Thermal Barrier Coatings with Rough Top-Coat/Bond-Coat Interfaces, Scripta Mater., 2005, 52, p 905-909CrossRefGoogle Scholar
  15. 15.
    A.M. Karlsson, J.W. Hutchinson, and A.G. Evans, The Displacement of the Thermally Grown Oxide in Thermal Barrier Systems upon Temperature Cycling, Mater. Sci. Eng. A, 2003, 351, p 244-257CrossRefGoogle Scholar
  16. 16.
    S. Faulhaber, C. Mercer, M.-W. Moon, J.W. Hutchinson, and A.G. Evans, Buckling Delamination in Compressed Multilayers on Curved Substrates with Accompanying Ridge Cracks, J. Mech. Phys. Solids, 2006, 54, p p1004-p1028CrossRefGoogle Scholar
  17. 17.
    H.X. Zhu, N.A. Fleck, A.C.F. Cocks, and A.G. Evans, Numerical Simulations of Crack Formation from Pegs in Thermal Barrier Systems with NiCoCrAlY Bond Coats, Mater. Sci. Eng. A, 2005, 404, p 26-32CrossRefGoogle Scholar
  18. 18.
    U. Schulz, K. Fritscher, and A.E. Stahl, Cyclic Behavior of EB-PVD Thermal Barrier Coating Systems with Modified Bond Coats, Surf. Coat. Technol., 2008, 203, p 449-455CrossRefGoogle Scholar
  19. 19.
    H.-B. Xu, S.-K. Gong, Y. Zhang, and C.-X. Zhang, Experimental and Computational Study on Hot Fatigue Process of Thermal Barrier Coatings by EB-PVD, Intermetallics, 2005, 13, p 315-322CrossRefGoogle Scholar
  20. 20.
    A. Gil, D. Naumenko, R. Vassen, J. Toscano, M. Subanovic, L. Singheiser, and W.J. Quadakkers, Y-rich Oxide Distribution in Plasma Sprayed MCrAlY-Coatings Studied by SEM with a Cathodoluminescent Detector and Raman Spectroscopy, Surf. Coat. Technol., 2009, 204, p 531-538CrossRefGoogle Scholar
  21. 21.
    A. Rabiei and A.G. Evans, Failure Mechanisms Associated with the Thermally Grown Oxide in Plasma-Sprayed Thermal Barrier Coatings, Acta Mater., 2000, 48(15), p 3963-3976CrossRefGoogle Scholar
  22. 22.
    M. Shibata, S. Kuroda, H. Murakami, M. Ode, M. Watanabe, and Y. Sakamoto, Comparison of Microstructure and Oxidation Behavior of CoNiCrAlY Bond Coatings Prepared by Different Thermal Spray Processes, Mater. Trans., 2006, 47(7), p 1638-1642CrossRefGoogle Scholar
  23. 23.
    W.-R. Chen, X. Wu, B.R. Marple, D.R. Nagy, and P.C. Patnaik, TGO Growth Behaviour in TBCs with APS and HVOF Bond Coats, Surf. Coat. Technol., 2008, 202, p 2677-2683CrossRefGoogle Scholar
  24. 24.
    Y. Li, C.-J. Li, G.-J. Yang, and L.-K. Xing, Thermal Fatigue Behavior of Thermal Barrier Coatings with the MCrAlY Bond Coats by Cold Spraying and Low-Pressure Plasma Spraying, Surf. Coat. Technol., 2010, doi: 10.1016/j.surfcoat.2010.08.144
  25. 25.
    Y. Li, C.-J. Li, Q. Zhang, G.-J. Yang, and C.-X. Li, Influence of TGO Composition on the Thermal Shock Lifetime of Thermal Barrier Coatings with Cold-Sprayed MCrAlY Bond Coat, J. Therm. Spray Technol., 2010, 19(1-2), p 168-177CrossRefGoogle Scholar
  26. 26.
    Q. Zhang, C.-J. Li, C.-X. Li, G.-J. Yang, and S.-C. Lui, Study of Oxidation Behavior of Nanostructured NiCrAlY Bond Coatings Deposited by Cold Spraying, Surf. Coat. Technol., 2008, 202(14), p 3378-3384CrossRefGoogle Scholar
  27. 27.
    P. Richer, M. Yandouzi, L. Beauvais, and B. Jodoin, Oxidation Behaviour of CoNiCrAlY Bond Coats Produced by Plasma, HVOF and Cold Gas Dynamic Spraying, Surf. Coat. Technol., 2010, 204(24), p 3962-3974CrossRefGoogle Scholar
  28. 28.
    P. Richer, A. Zúñiga, M. Yandouzi, and B. Jodoin, CoNiCrAlY Microstructural Changes Induced During Cold Gas Dynamic Spraying, Surf. Coat. Technol., 2008, 203(3-4), p 364-371CrossRefGoogle Scholar
  29. 29.
    W.-Y. Li, H.-L. Liao, C.-J. Li, G. Li, C. Coddet, and X.-F. Wang, On High Velocity Impact of Micro-Sized Metallic Particles in Cold Spraying, Appl. Surf. Sci., 2006, 253, p 2852-2862CrossRefGoogle Scholar
  30. 30.
    M. Grujicic, C.L. Zhao, W.S. DeRosset, and D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Des., 2004, 25, p 681-688Google Scholar
  31. 31.
    W.-Y. Li, C. Zhang, X.-P. Guo, C.-J. Li, H.-L. Liao, and C. Coddet, Study on Impact Fusion at Particle Interfaces and its Effect on Coating Microstructure in Cold Spraying, Appl. Surf. Sci., 2007, 254, p 517-526CrossRefGoogle Scholar
  32. 32.
    G.-S. Huang, Deposition Properties of Cold-Sprayed CoNiCrAlY Coatings Prepared with Nitrogen Gas, Proceedings of the 4th Asian Thermal Spray Conference, C.-J. Li and G.-J. Yang, Ed., Oct. 22-24, 2009 (Xi’an, China), 2009, p 366-369Google Scholar
  33. 33.
    D. Seo, K. Ogawa, Y. Suzuki, K. Ichimura, T. Shoji, and S. Murata, Comparative Study on Oxidation Behavior of Selected MCrAlY Coatings by Elemental Concentration Profile Analysis, Appl. Surf. Sci., 2008, 255, p 2581-2590CrossRefGoogle Scholar
  34. 34.
    R. Chegroune, E. Salhi, A. Crisci, Y. Wouters, and A. Galerie, On the Competitive Growth of Alpha and Transient Aluminas During the First Stages of Thermal Oxidation of FeCrAl Alloys at Intermediate Temperatures, Oxid. Met., 2008, 70, p 331-337CrossRefGoogle Scholar
  35. 35.
    Y.-S. Yi and J.-D. Zhang, Alumina Ceramic Material and Its Composite, Chemical Industry Press, 2001, p 93 (in Chinese)Google Scholar
  36. 36.
    M. Matsumoto, K. Hayakawa, S. Kitaoka, H. Matsubara, H. Takayama, Y. Kagiya, and Y. Sugita, The Effect of Pre-Oxidation Atmosphere on Oxidation Behavior and Thermal Cycle Life of Thermal Barrier Coatings, Mater. Sci. Eng. A, 2006, 441, p 119-125CrossRefGoogle Scholar
  37. 37.
    M. Matsumoto, T. Kato, K. Hayakawa, N. Yamaguchi, S. Kitaoka, and H. Matsubara, The Effect of Pre-Oxidation Atmosphere on the Durability of EB-PVD Thermal Barrier Coatings with CoNiCrAlY Bond Coats, Surf. Coat. Technol., 2008, 202(12), p 2743-2748CrossRefGoogle Scholar
  38. 38.
    F. Tang, L. Ajdelsztajn, and J.M. Schoenung, Influence of Cryomilling on the Morphology and Composition of the Oxide Scales Formed on HVOF CoNiCrAlY Coatings, Oxid. Met., 2004, 61(3/4), p 219-238CrossRefGoogle Scholar
  39. 39.
    M.S. Ali, S.H. Song, and P. Xiao, Degradation of Thermal Barrier Coatings Due to Thermal Cycling up to 1150 °C, J. Mater. Sci., 2002, 37, p 2097-2102CrossRefGoogle Scholar
  40. 40.
    M. Dressler, M. Nofz, I. Dörfel, and R.S. Neumann, Influence of Sol-Gel Derived Alumina Coatings on Oxide Scale Growth of Nickel-Base Ssuperalloy Inconel-718, Surf. Coat. Technol., 2008, 202, p 6095-6102CrossRefGoogle Scholar
  41. 41.
    Y.J. Su, R.W. Trice, K.T. Faber, H. Wang, and W.D. Porter, Thermal Conductivity, Phase Stability, and Oxidation Resistance of Y3Al5O12 (YAG)/Y2O3-ZrO2 (YSZ) Thermal-Barrier Coatings, Oxid. Met., 2004, 61(3-4), p 253-271CrossRefGoogle Scholar
  42. 42.
    H. Yamano, K. Tani, Y. Harada, and T. Teratani, Oxidation Control with Chromate Pretreatment of MCrAlY Unmelted Particle and Bond Coat in Thermal Barrier Systems, J. Therm. Spray Technol., 2008, 17(2), p 275-283CrossRefGoogle Scholar
  43. 43.
    P. Saltykov, O. Fabrichnaya, J. Golczewski, and F. Aldinger, Thermodynamic Modeling of Oxidation of Al-Cr-Ni Alloys, J. Alloy. Compd., 2004, 381, p 99-113CrossRefGoogle Scholar
  44. 44.
    U. Dragos, M. Gabriela, B. Waltraut, and C. Ioan, Improvement of the Oxidation Behavior of Electron Beam Remelted MCrAlY Coatings, Solid State Sci., 2005, 7, p 459-464CrossRefGoogle Scholar
  45. 45.
    M. Karadge, X. Zhao, M. Preuss, and P. Xiao, Microtexture of the Thermally Grown Alumina in Commercial Thermal Barrier Coatings, Scripta Mater., 2006, 54(4), p 639-644CrossRefGoogle Scholar

Copyright information

© ASM International 2010

Authors and Affiliations

  • Yong Li
    • 1
  • Chang-Jiu Li
    • 1
    Email author
  • Qiang Zhang
    • 1
  • Lu-Kuo Xing
    • 1
  • Guan-Jun Yang
    • 1
  1. 1.State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and EngineeringXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations