Advertisement

Journal of Thermal Spray Technology

, Volume 20, Issue 3, pp 486–496 | Cite as

Mechanical Property Mapping of Cold Sprayed Ti Splats and Coatings

  • Dina Goldbaum
  • Richard R. ChromikEmail author
  • Stephen Yue
  • Eric Irissou
  • Jean-Gabriel Legoux
Peer Reviewed

Abstract

Profile nanoindentation and nanoindentation mapping were used to investigate the mechanical properties of commercially pure cold spray Ti splats and coatings deposited at increasing deposition velocities. Three regions in the cold spray Ti splats have been indentified: the impact region, the jetting region, and the upper splat region. The mechanical properties measured in these regions were tied to the cold spray deposition process with help of optical and scanning electron microscopes. The jetting region was observed to contribute to a metallurgical bonding of cold spray splats to cold spray splats and was measured to have low hardness in comparison to the splat impact site and similar to the hardness in the upper splat region. No increase in the profile coatings hardness with increase in the particle in-flight velocity and coating thickness was found. A correlation between the mechanical properties and the presently known deposition temperature, stress and dislocation density models was made.

Keywords

cold spray hardness mapping nanoindentation titanium 

Notes

Acknowledgments

Financial support from the Canadian Foundation for Innovation is gratefully acknowledged; the cold spray equipment was provided by CFI project No. 8246 while the nanoindentation equipment was provided by CFI, Leader’s Opportunity Fund, project No. 13029. Operational funding for this project was provided by the Natural Sciences and Engineering Research Council (NSERC) Strategic Grants Program. The authors acknowledge the technical assistance of Ahmad Rezaeian, Bernard Harvey and Frederic Belval.

References

  1. 1.
    E. Irissou, J.G. Legoux, A. Ryabinin, B. Jodoin, and C. Moreau, Review on Cold Spray Process and Technology: Part I, Intellectual Property, J. Therm. Spray Technol., 2008, 17(4), p 495-516Google Scholar
  2. 2.
    A. Papyrin, V. Kosarev, K. V. Klinkov, A. Alkhimov, and V. M. Fomin, Cold Spray Technology, Elsevier, Oxford, 2006, p 74, 153-169, 259Google Scholar
  3. 3.
    V.K. Champagne, The Cold Spray Materials Deposition Process: Fundamentals and Applications, Woodhead Publishing Limited, Cambridge, 2007, p 362Google Scholar
  4. 4.
    T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54(3), p 729-742Google Scholar
  5. 5.
    C.-J. Li, W.-Y. Li, and H. Liao, Examination of the Critical Velocity for Deposition of Particles in Cold Spraying, J. Therm. Spray Technol., 2006, 15(2), p 212-222Google Scholar
  6. 6.
    M. Grujicic, C.L. Zhao, W.S. DeRosset, and D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Des., 2004, 25(8), p 681-688Google Scholar
  7. 7.
    H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394Google Scholar
  8. 8.
    T. Schmidt, F. Gaertner, and H. Kreye, New Developments in Cold Spray Based on Higher Gas and Particle Temperatures, J. Therm. Spray Technol., 2006, 15(4), p 488-494Google Scholar
  9. 9.
    C. Borchers, F. Gartner, T. Stoltenhoff, and H. Kreye, Microstructural Bonding Features of Cold Sprayed Face Centered Cubic Metals, J. Appl. Phys., 2004, 96(8), p 4288-4292Google Scholar
  10. 10.
    T. Kairet, M. Degrez, F. Campana, and J.P. Janssen, Influence of the Powder Size Distribution on the Microstructure of Cold-Sprayed Copper Coatings Studied by X-ray Diffraction, J. Therm. Spray Technol., 2007, 16(5), p 610-618Google Scholar
  11. 11.
    A. Rezaeian, E. Irissou, R.R. Chromik, S. Yue, Characterization of Cold-Sprayed Ni, Ti, Cu Coating Properties for their Optimization, Thermal Spray: Crossing Borders, Jun 2-4, 2008 (Maastricht, The Netherlands), ASM International, p 854-859Google Scholar
  12. 12.
    T.H. Van Steenkiste, J.R. Smith, R.E. Teets, J.J. Moleski, D.W. Gorkiewicz, R.P. Tison, D.R. Marantz, K.A. Kowalsky, W.L. Riggs, P.H. Zajchowski, B. Pilsner, R.C. McCune, and K.J. Barnett, Kinetic Spray Coatings, Surf. Coat. Technol., 1999, 111(1), p 62-71Google Scholar
  13. 13.
    T. Stoltenhoff, C. Borchers, F. Gärtner, and H. Kreye, Microstructures and Key Properties of Cold-Sprayed and Thermally Sprayed Copper Coatings, Surf. Coat. Technol., 2006, 200(16-17), p 4947-4960Google Scholar
  14. 14.
    S. Zahiri, D. Fraser, and M. Jahedi, Recrystallization of Cold Spray-Fabricated CP Titanium Structures, J. Therm. Spray Technol., 2009, 18(1), p 16-22Google Scholar
  15. 15.
    C.-J. Li and W.-Y. Li, Deposition Characteristics of Titanium Coating in Cold Spraying, Surf. Coat. Technol., 2003, 167(2-3), p 278-283Google Scholar
  16. 16.
    W.Y. Li, C. Zhang, X. Guo, J. Xu, C.J. Li, H. Liao, C. Coddet, and K.A. Khor, Ti and Ti-6Al-4V Coatings by Cold Spraying and Microstructure Modification by Heat Treatment, Adv. Eng. Mater., 2007, 9(5), p 418-423Google Scholar
  17. 17.
    R.S. Lima, A. Kucuk, C.C. Berndt, J. Karthikeyan, C.M. Kay, and J. Lindemann, Deposition Efficiency, Mechanical Properties and Coating Roughness in Cold-Sprayed Titanium, J. Mater. Sci. Lett., 2002, 21(21), p 1687-1689Google Scholar
  18. 18.
    T. Marrocco, D. McCartney, P. Shipway, and A. Sturgeon, Production of Titanium Deposits by Cold-Gas Dynamic Spray: Numerical Modeling and Experimental Characterization, J. Therm. Spray Technol., 2006, 15(2), p 263-272Google Scholar
  19. 19.
    J. Vlcek, H. Huber, H. F. Voggenreiter, and E. Lugscheider, Melting Upon Particle Impact in the Cold Spray Process, International Congress on Advanced Materials, Their Process and Applications, September 30-October 2, 2002 (Munich, Germany), Deutsche Gesellschaff Fur Materialkunde (DSM)Google Scholar
  20. 20.
    G. Bae, S. Kumar, S. Yoon, K. Kang, H. Na, H.J. Kim, and C. Lee, Bonding Features and Associated Mechanisms in Kinetic Sprayed Titanium Coatings, Acta Mater., 2009, 57(19), p 5654-5666Google Scholar
  21. 21.
    K. Kim, M. Watanabe, K. Mitsuishi, K. Iakoubovskii, and S. Kuroda, Impact Bonding and Rebounding Between Kinetically Sprayed Titanium Particle and Steel Substrate Revealed by High-Resolution Electron Microscopy, J. Appl. Phys. D, 2009, 42(6), p 65304Google Scholar
  22. 22.
    W. Wong, A. Rezaeian, E. Irissou, J.G. Legoux, and S. Yue, Cold Spray Characteristics of Commercially Pure Ti and Ti-6Al-4V, Adv. Mater. Res., 2010, 89-91, p 639-644Google Scholar
  23. 23.
    K.-H. Kim, M. Watanabe, J. Kawakita, and S. Kuroda, Grain Refinement in a Single Titanium Powder Particle Impacted at High Velocity, Scripta Mater., 2008, 59(7), p 768-771Google Scholar
  24. 24.
    K.-H. Kim, M. Watanabe, J. Kawakita, and S. Kuroda, Effects of Temperature of In-flight Particles on Bonding and Microstructure in Warm-Sprayed Titanium Deposits, J. Therm. Spray Technol., 2009, 18(3), p 392-400Google Scholar
  25. 25.
    R. Kapoor and S. Nemat-Nasser, Determination of Temperature Rise During High Strain Rate Deformation, Mech. Mater., 1998, 27(1), p 1-12Google Scholar
  26. 26.
    A. C. Fisher-Cripps, Nanoindentation, 2nd ed., Springer, New York, 2002, p 1-20.Google Scholar
  27. 27.
    W.C. Oliver and G.M. Pharr, Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, Mater. Res. Soc., 2004, 19(1), p 3-20Google Scholar
  28. 28.
    G. Bae, Y. Xiong, S. Kumar, K. Kang, and C. Lee, General Aspects of Interface Bonding in Kinetic Sprayed Coatings, Acta Mater., 2008, 56(17), p 4858-4868Google Scholar
  29. 29.
    J.J. Vlassak and W.D. Nix, Measuring the Elastic Properties of Anisotropic Materials by Means of Indentation Experiments, J. Mech. Phys. Solids, 1994, 42(8), p 1223-1245Google Scholar
  30. 30.
    J.J. Vlassak, M. Ciavarella, J.R. Barber, and X. Wang, The Indentation Modulus of Elastically Anisotropic Materials for Indenters of Arbitrary Shape, J. Mech. Phys. Solids, 2003, 51(9), p 1701-1721Google Scholar

Copyright information

© ASM International 2010

Authors and Affiliations

  • Dina Goldbaum
    • 1
  • Richard R. Chromik
    • 1
    Email author
  • Stephen Yue
    • 1
  • Eric Irissou
    • 2
  • Jean-Gabriel Legoux
    • 2
  1. 1.Department of Mining and Materials EngineeringMcGill UniversityMontrealCanada
  2. 2.National Research Council Canada, Industrial Materials InstituteBouchervilleCanada

Personalised recommendations