Journal of Thermal Spray Technology

, Volume 19, Issue 5, pp 1024–1031 | Cite as

The Effect of Substrate Surface Oxides on the Bonding of NiCr Alloy Particles HVAF Thermally Sprayed onto Aluminum Substrates

  • W. TrompetterEmail author
  • M. Hyland
  • D. McGrouther
  • P. Munroe
  • A. Markwitz
Peer Reviewed


The effect of substrate surface oxides on splat-substrate bonding was investigated by thermally spraying NiCr particles onto aluminum substrates with surface oxide layers grown hydrothermally and electrochemically. Cross sections of bonded solid and molten splats revealed substantial deformation of both the substrate and the surface oxide. In spite of the substantial substrate deformation, there was no significant loss of the surface oxide material and there was no observed diffusion of the substrate oxide into the NiCr particle or vice versa. For solid splats, the substrate oxide was still present over the entire splat-substrate interface, however for molten splats, the oxide had been penetrated in several locations allowing close proximity of the splat metal to the substrate metal. These results strengthen the theory that oxide layers impede bonding and that successful bonding occurs only when the surface oxide is substantially deformed or disrupted to produce mechanically interlocking features at the interface.


oxide HVAF splat-substrate bonding splat-substrate interaction 



The authors thank Steve Mathews previously of Auckland University and Holsters Engineering in Tokoroa for assistance with HVAF thermal spray sample preparation.


  1. 1.
    T.H. Van Steenkiste, J.R. Smith, and R.E. Teets, Aluminum Coatings Via Kinetic Spray with Relatively Large Powder Particles, Surf. Coat. Technol., 2002, 154(2-3), p 237-252CrossRefGoogle Scholar
  2. 2.
    M. Grujicic, J.R. Saylor, D.E. Beasley, W.S. DeRosset, and D. Helfritch, Computational Analysis of the Interfacial Bonding Between Feed-Powder Particles and the Substrate in the Cold-Gas Dynamic-Spray Process, Appl. Surf. Sci., 2003, 219, p 211-227CrossRefADSGoogle Scholar
  3. 3.
    K. Kang, S. Yoon, Y. Ji, and C. Lee, Oxidation Dependency of Critical Velocity for Aluminum Feedstock Deposition in Kinetic Spraying Process, Mater. Sci. Eng., 2008, A486, p 300-307Google Scholar
  4. 4.
    T.H. Van Steenkiste, J.R. Smith, R.E. Teets, J.J. Moleski, D.W. Gorkiewicz, R.P. Tison, D.R. Marantz, K.A. Kowalsky, W.L. Riggs, II, P.H. Zajchowski, B. Pilsner, R.C. McCune, and K.J. Barnett, Kinetic spray coatings, Surf. Coat. Tech., 1999, 111, p 62-71CrossRefGoogle Scholar
  5. 5.
    P. Fauchais, M. Fukumoto, A. Vardelle, and M. Vardelle, Knowledge Concerning Splat Formation: An Invited Review, J. Therm. Spray. Technol., 2004, 13(3), p 337-360CrossRefADSGoogle Scholar
  6. 6.
    W.J. Trompetter, A. Markwitz, and M. Hyland, Use of IBA Techniques to Characterize High Velocity Spray Coatings, Modern Phys. Lett., 2001, B15, p 1428-1436CrossRefADSGoogle Scholar
  7. 7.
    W.J. Trompetter, A. Markwitz, and M. Hyland, Role of Oxides in High Velocity Thermal Spray Coatings, Nucl. Instrum. Method, 2002, B190, p 518-523ADSGoogle Scholar
  8. 8.
    S. Lopez, J.P. Petit, H.M. Dunlop, J.R. Butruille, and G. Tourillon, Acid-Base Properties of Passive Films on Aluminum: I. A Photoelectrochemical Study, J. Electrochem. Soc., 1998, 145(3), p 823-829CrossRefGoogle Scholar
  9. 9.
    S. Wernick, R. Pinner, and P. Sheasby, The Surface Treatment and Finishing of Aluminum and Its Alloys, 5th ed. Vol 1 and 2, ASM International, Materials Park, OH, 1987, p 661Google Scholar
  10. 10.
    J.A. Browning, Hypervelocity Impact Fusion—A Technical note, J. Therm. Spray. Technol., 1992, 1(4), p 289-292CrossRefADSGoogle Scholar
  11. 11.
    N. Rowlands and P. Munroe, FIB for the Evaluation of Non-Semiconductor Materials, Microstr. Sci., 1998, 26, p 26-29Google Scholar
  12. 12.
    J.M. Cairney, R.D. Smith, and P.R. Munroe, Transmission Electron Microscope Specimen Preparation of Metal Matrix Composites Using the Focused Ion Beam Miller, Microsc. Microanal., 2000, 5, p 452-462ADSGoogle Scholar
  13. 13.
    M.D. Uchic, L. Hozler, B. Inkson, E.L. Principe, and P.R. Munroe, 3D Microstructural Characterisation Using Focused Ion Beam Tomography, MRS Bull., 2007, 32, p 408-416Google Scholar
  14. 14.
    W.J. Trompetter, M. Hyland, P. Munroe, and A. Markwitz, Evidence of Mechanical Interlocking of NiCr Particles Thermally Sprayed onto Al Substrates, J. Therm. Spray. Technol., 2005, 14(4), p 524-529CrossRefADSGoogle Scholar
  15. 15.
    W.J. Trompetter, M. Hyland, P. Munroe, D. McGrouther, and A. Markwitz, The Effect of the Substrate Hardness on Particle Morphology in High Velocity Thermal Spray Coatings, J. Therm. Spray. Technol., 2006, 15(4), p 663-669CrossRefADSGoogle Scholar
  16. 16.
    G. Bae, Y. Xiong, S. Kumar, K. Kang, and C. Lee, General Aspects of Interface Bonding in Kinetic Sprayed Coatings, Acta Mater., 2008, 56, p 4858-4868CrossRefGoogle Scholar
  17. 17.
    P.C. King, S.H. Zahiri, and M. Jahedi, Focused Ion Beam Micro-Dissection of Cold-Sprayed Particles, Acta Mater., 2008, 56, p 5617CrossRefGoogle Scholar
  18. 18.
    K.H. Kim, M. Watanabe, K. Mitsuishi, K. Iakoubovskii, and S. Kuroda, Impact Bonding and Rebounding Between Kinetically Sprayed Titanium Particle and Steel Substrate Revealed by High-Resolution Electron Microscopy, J. Phys. D Appl. Phys., 2009, 42, p 065304CrossRefADSGoogle Scholar
  19. 19.
    J.G. Li and X. Sun, Synthesis and Sintering Behavior of a Nanocrystalline α-Alumina Powder, Acta Mater., 2000, 48(12), p 3103-3112CrossRefGoogle Scholar

Copyright information

© ASM International 2010

Authors and Affiliations

  • W. Trompetter
    • 1
    • 2
    Email author
  • M. Hyland
    • 2
  • D. McGrouther
    • 3
  • P. Munroe
    • 3
  • A. Markwitz
    • 1
  1. 1.National Isotope CentreGNS ScienceLower HuttNew Zealand
  2. 2.Department of Chemical and Materials EngineeringUniversity of AucklandAucklandNew Zealand
  3. 3.Electron Microscope UnitUniversity of New South WalesSydneyAustralia

Personalised recommendations