Advertisement

Journal of Thermal Spray Technology

, Volume 19, Issue 4, pp 816–823 | Cite as

Microstructure and Phase Composition of Composite Coatings Formed by Plasma Spraying of ZrO2 and B4C Powders

  • P. Karuna Purnapu Rupa
  • Prashant Sharma
  • R. M. MohantyEmail author
  • K. Balasubramanian
Peer Reviewed

Abstract

The effect of addition of 5 to 30 wt.% boron carbide (B4C) on structure and hardness of plasma sprayed zirconia (ZrO2) coating has been studied in this paper. The coatings have exhibited a uniform porous microstructure. A reaction between B4C and ZrO2 resulted in the formation of a diboride (ZrB2) phase. The presence of ZrB2 in the coatings has been confirmed through x-ray diffraction studies. In order to study the effect of critical processing parameters, the coatings have also been deposited under increased hydrogen flow rate (11.8 SLM). This increased the abrasion integrity of the coatings. A high yield of ZrB2 was observed in the case of 15 wt.% B4C addition. Hardness of the coatings have been influenced by the porosities, additionally generated by the formation of ZrB2. Under increased hydrogen flow rate, a composite coating of ZrO2-ZrB2 was obtained from the ZrO2-B4C powder mixture.

Keywords

boron carbide composite coatings plasma spray zirconia zirconium boride 

References

  1. 1.
    A. Vaidya, V. Srinivasan, T. Streibl, M. Friis, W. Chi, and S. Sampath, Process Maps for Plasma Spraying of Yttria-Stabilized Zirconia: An Integrated Approach to Design, Optimization and Reliability, Mater. Sci. Eng. A, 2008, 497(1-2), p 239-253CrossRefGoogle Scholar
  2. 2.
    M. Friis and C. Persson, Control of Thermal Spray Processes by Means of Process Maps and Process Windows, J. Therm. Spray Technol., 2003, 12(1), p 44-52CrossRefADSGoogle Scholar
  3. 3.
    S.V. Joshi and M.P. Srivastava, Plasma Spraying of WC-Co Part II: Experimental Study of Particle Deposition and Coating Microstructure, J. Therm. Spray Technol., 1993, 2(2), p 133-136CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    E. Sanchez, E. Bannier, V. Cantavella, M.D. Salvador, E. Klyatskina, J. Morgiel, J. Grzonka, and A.R. Boccaccini, Deposition of Al2O3-TiO2 Nanostructured Powders by Atmospheric Plasma Spraying, J. Therm. Spray Technol., 2008, 17(3), p 329-337CrossRefADSGoogle Scholar
  5. 5.
    W. Feng, D. Yan, J. He, X. Li, and Y. Dong, Reactive Plasma Sprayed TiN Coating and Its Tribological Properties, Wear, 2005, 258(5-6), p 806-811CrossRefGoogle Scholar
  6. 6.
    P.V. Ananthapadmanabhan, P.R. Taylor, and W. Zhu, Synthesis of Titanium Nitride in a Thermal Plasma Reactor, J. Alloys Compd., 1999, 287(1-2), p 126-129CrossRefGoogle Scholar
  7. 7.
    M. Yamada, T. Yasui, M. Fukumoto, and K. Takahashi, Nitridation of Aluminum Particles and Formation Process of Aluminum Nitride Coatings by Reactive RF Plasma Spraying, Thin Solid Films, 2007, 515(9), p 4166-4171CrossRefADSGoogle Scholar
  8. 8.
    Y. Motohiro, I. Tatsuya, F. Masahiro, and Y. Toshiaki, Fabrication of Silicon Nitride Thick Coatings by Reactive RF Plasma Spraying, Mater. Trans., 2004, 45(12), p 3304-3308CrossRefGoogle Scholar
  9. 9.
    M. Yamada, Y. Kouzaki, T. Yasui, and M. Fukumoto, Fabrication of Iron Nitride Coatings by Reactive RF Plasma Spraying, Surf. Coat. Technol., 2006, 201(3-4), p 1745-1751CrossRefGoogle Scholar
  10. 10.
    Y. Tsunekawa, M. Okumiya, T. Kobayashi, M. Okuda, and M. Fukumoto, Chromium-Nitride In Situ Composites with a Compositional Gradient Formed by Reactive DC Plasma Spraying, J. Therm. Spray Technol., 1996, 5(2), p 139-144CrossRefADSGoogle Scholar
  11. 11.
    A. Fridman, Plasma Chemistry, Cambridge University Press, Cambridge, 2008CrossRefGoogle Scholar
  12. 12.
    R.W. Smith and Z.Z. Mutasim, Reactive Plasma Spraying of Wear-Resistant Coatings, J. Therm. Spray Technol., 1992, 1(1), p 57-63CrossRefADSGoogle Scholar
  13. 13.
    Y. Tsunekawa, K. Gotoh, M. Okumiya, and N. Mohri, Synthesis and High-Temperature Stability of Titanium Aluminide Matrix In Situ Composites, J. Therm. Spray Technol., 1992, 1(3), p 223-229CrossRefADSGoogle Scholar
  14. 14.
    S.C. Deevi, V.K. Sikka, C.J. Swindeman, and R.D. Seals, Reactive Spraying of Nickel-Aluminide Coatings, J. Therm. Spray Technol., 1997, 6(3), p 335-344CrossRefADSGoogle Scholar
  15. 15.
    S. Dallaire and G. Cliche, Tribological Properties of TiC-Fe Coatings Obtained by Plasma Spraying Reactive Powders, J. Therm. Spray. Technol., 1993, 2(1), p 39-44CrossRefADSGoogle Scholar
  16. 16.
    P.V. Ananthapadmanabhan and P.R. Taylor, Titanium Carbide–Iron Composite Coatings by Reactive Plasma Spraying of Ilmenite, J. Alloys Compd., 1999, 287(1-2), p 121-125CrossRefGoogle Scholar
  17. 17.
    Y. Dong, D. Yan, J. He, X. Li, W. Feng, and H. Liu, Studies on Composite Coatings Prepared by Plasma Spraying Fe2O3–Al Self-Reaction Composite Powders, Surf. Coat. Technol., 2004, 179(2-3), p 223-228CrossRefGoogle Scholar
  18. 18.
    A. Ohmori, S. Hirano, and K. Kamacta, Spraying TiN by a Combined Laser and Low-Pressure Plasma Spray System, J. Therm. Spray Technol., 1993, 2(2), p 137-144CrossRefADSGoogle Scholar
  19. 19.
    C. Tekmen, Y. Tsunekawa, and M. Okumiya, In-Situ TiB2 and Al2O3 Formation by DC Plasma Spraying, Surf. Coat. Technol., 2008, 202(17), p 4170-4175CrossRefGoogle Scholar
  20. 20.
    J.J. Moore and H.J. Feng, Combustion Synthesis of Advanced Materials: Part-1. Reaction Parameters, Prog. Mater. Sci., 1995, 39(4-5), p 275-316CrossRefGoogle Scholar
  21. 21.
    A. Goldstein, Y. Yeshurun, and A. Goldenberg, B4C/Metal Boride Composites Derived from B4C/Metal Oxide Mixtures, J. Eur. Ceram. Soc., 2007, 27(2-3), p 695-700CrossRefGoogle Scholar
  22. 22.
    F. Mizusako, H. Tamura, K. Horioka, and Y. Harada, Zr–O–B Ceramics/Ni–20%Cr Alloy Graded Coating Produced by Electrothermal Explosion Spraying, Surf. Coat. Technol., 2004, 187(2-3), p 257-264CrossRefGoogle Scholar
  23. 23.
    A.L. Chamberlain, W.G. Fahrenholtz, and G.H. Hilmas, Pressureless Sintering of Zirconium Diboride, J. Am. Ceram. Soc., 2006, 89(2), p 450-456CrossRefGoogle Scholar
  24. 24.
    H. Kim, Y. Koh, and H. Kim, Reaction Sintering and Mechanical Properties of B4C with Addition of ZrO2, J. Mater. Res., 2000, 15(11), p 2431-2436CrossRefADSGoogle Scholar
  25. 25.
    J.R. Davis, Hand Book of Thermal Spray Technology, J.R. Davis, Ed., ASM International, Materials Park, 2005, p 5 Google Scholar
  26. 26.
    A. Kulkarni, Z. Wang, T. Nakamura, S. Sampath, A. Goland, H. Herman, J. Allen, J. Ilavsky, G. Long, J. Frahm, and R.W. Steinbrech, Comprehensive Microstructural Characterization and Predictive Property Modeling of Plasma-Sprayed Zirconia Coatings, Acta Mater., 2003, 51(9), p 2457-2475CrossRefGoogle Scholar
  27. 27.
    A. Kulkarni, A. Vaidya, A. Goland, S. Sampath, and H. Herman, Processing Effects on Porosity-Property Correlations in Plasma Sprayed Yttria-Stabilized Zirconia Coatings, Mater. Sci. Eng. A, 2003, 359(1-2), p 100-111CrossRefGoogle Scholar

Copyright information

© ASM International 2010

Authors and Affiliations

  • P. Karuna Purnapu Rupa
    • 1
  • Prashant Sharma
    • 1
  • R. M. Mohanty
    • 1
    Email author
  • K. Balasubramanian
    • 1
  1. 1.Non Ferrous Materials Technology Development CentreHyderabadIndia

Personalised recommendations