Journal of Thermal Spray Technology

, Volume 19, Issue 4, pp 756–764 | Cite as

Process Design and Monitoring for Plasma Sprayed Abradable Coatings

  • Tanja Steinke
  • Georg Mauer
  • Robert Vaßen
  • Detlev Stöver
  • Dan Roth-Fagaraseanu
  • Matthew Hancock
Peer Reviewed


Abradable coatings in compressor and high-pressure stages of gas turbines must provide specific hardness and porosity values to achieve an optimal cut-in of the blade tips. A fractional factorial experimental plan was designed to investigate the influence of the plasma spraying parameters argon flow rate, current, spraying distance and powder feed rate on these properties of magnesia spinel. Based on the results, magnesia spinel coatings with low (~400 HV0.5), medium (~600 HV0.5) and high hardness (~800 HV0.5) could be reliably manufactured. Further incursion rig tests confirmed the dependence of the rub-in behavior and abradability on the coating characteristics and process parameters, respectively. Process monitoring was also applied during plasma spraying of magnesia spinel abradables on batches of turbine components. The recorded particle characteristics and coating properties showed a good reproducibility of the spraying process.


coatings for engine components coatings for gas turbine components influence of spray parameters porosity of coatings PS microstructures TBC topcoats 



The authors gratefully acknowledge the support of Dr. Jürgen Malzbender (Forschungszentrum Jülich GmbH, IEF-2) who carried out the hardness and Young’s modulus measurements with instrumented microindentation technique. Mr. Mark Kappertz (IEF-1) kindly prepared the cross-sections of the samples and Dr. Doris Sebold (IEF-1) did the SEM work.


  1. 1.
    R.K. Schmid, F. Ghasripoor, M. Dorfman, and X. Wei, An Overview of Compressor Abradables, Thermal Spray: Surface Engineering via Applied Research, C.C. Berndt, Ed., May 8-11, 2000 (Montréal, QC, Canada), ASM International, 2000, p 1087-1093Google Scholar
  2. 2.
    D. Sporer, S. Wilson, I. Giovannetti, A. Refke, and M. Giannozzi, On the Potential of Metal and Ceramic Based Abradables in Turbine Seal Applications, Proceedings of the Thirty-Sixth Turbomachinery Symposium, Sept 11-13, 2007 (Texas A&M University, College Station, TX), 2007, p 79-86Google Scholar
  3. 3.
    D. Sporer, M. Dorfman, L. Xie, A. Refke, I. Giovannetti, and M. Giannozzi, Processing and Properties of Advanced Ceramic Abradable Coatings, Thermal Spray 2007: Global Coating Solutions, M.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and G. Montavon, Ed., May 14-16, 2007 (Beijing, Japan), ASM International, 2007, p 495-500Google Scholar
  4. 4.
    R.S. Lima, B.R. Marple, A. Dadouche, W. Dmochowski, and B. Liko, Nanostructured Abradable Coatings for High Temperature Application, Thermal Spray 2006: Building on 100 Years of Success, M.R. Marple, M.M. Hyland, Y.-C. Lau, R.S. Lima, and J. Voyer, Ed., May 15-18, 2006 (Seattle, WA, USA), ASM International, 2006Google Scholar
  5. 5.
    R. Schmid, “New High Temperature Abradables for Gas Turbines,” Ph.D. Thesis, Swiss Federal Institute of Technology Zurich, 1997Google Scholar
  6. 6.
    F. Ghasripoor, R. Schmid, and M. Dorfman, Abradable Coatings Increase Gas Turbine Efficiency, Mater. World, 1997, 5(6), p 328-330Google Scholar
  7. 7.
    R. Vaßen, F. Traeger, and D. Stöver, New Thermal Barrier Coatings Based on Pyrochlore/YSZ Double-Layer Systems, Int. J. Appl. Ceram. Technol., 2004, 1(4), p 351-361Google Scholar
  8. 8.
    R. Vaßen, A. Stuke, and D. Stöver, Recent Developments in the Field of Thermal Barrier Coatings, J. Therm. Spray Technnol., 2009, 18(2), p 181-186CrossRefADSGoogle Scholar
  9. 9.
    Shroud Segment for a Turbomachine, U.S. Patent US 2005/0276688 A1Google Scholar
  10. 10.
    L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, 2. ed., Wiley, Chichester, 2008Google Scholar
  11. 11.
    A. Kulkarni, A. Vaidya, A. Goland, S. Sampath, and H. Herman, Processing Effects on Porosity-Property Correlations in Plasma Sprayed Yttria-Stabilized Zirconia Coatings, Mater. Sci. Eng. A, 2003, A359(1-2), p 100-111Google Scholar
  12. 12.
    M. Friis and C. Persson, Process Window for Plasma Spray Processes, Thermal Spray 2001: New Surfaces for a New Millennium, C.C. Berndt, K.A. Khor, and E.F. Lugscheider, Ed., May 28-30, 2001 (Singapore), ASM International, 2001, p 1313-1319Google Scholar
  13. 13.
    C. Pierlot, L. Pawlowski, M. Bigan, and P. Chagnon, Design of Experiments in Thermal Spraying: A Review, Surf. Coat. Technol., 2008, 202(18), p 4483-4490CrossRefGoogle Scholar
  14. 14.
    G. Mauer, R. Vaßen, and D. Stöver, Comparison and Applications of DPV-2000 and Accuraspray-g3 Diagnostic Systems, J. Therm. Spray Technol., 2007, 16(3), p 414-424CrossRefADSGoogle Scholar
  15. 15.
    Advanced Technical Ceramics—Mechanical Properties of Monolithic Ceramics at Room Temperature—Part 4: Vickers, Knoop and Rockwell Superficial Hardness; German Version EN 843-4:2005, DIN Deutsches Institute für Normung e.V., p 1-22Google Scholar
  16. 16.
    J. Malzbender and R.W. Steinbrech, Determination of the Stress-Dependent Stiffness of Plasma-Sprayed Thermal Barrier Coatings Using Depth-Sensitive Indentation, J. Mater. Res., 2003, 18(8), p 1975-1984CrossRefADSGoogle Scholar
  17. 17.
    G. Bertrand, P. Bertrand, P. Roy, C. Rio, and R. Mevrel, Low Conductivity Plasma Sprayed Thermal Barrier Coating Using Hollow PSZ Spheres: Correlation Between Thermophysical Properties and Microstructure, Surf. Coat. Technol., 2008, 202(10), p 1994-2001CrossRefGoogle Scholar
  18. 18.
    J. Matějíček, B. Kolman, J. Dubský, K. Neufuss, N. Hopkins, and J. Zwick, Alternative Methods for Determination of Composition and Porosity in Abradable Materials, Mater. Charact., 2006, 57(1), p 17-29CrossRefGoogle Scholar
  19. 19.
    J. Ilavsky, C.C. Berndt, and J. Karthikeyan, Mercury Intrusion Porosimetry of Plasma-Sprayed Ceramic, J. Mater. Sci., 1997, 32(15), p 3925-3932CrossRefGoogle Scholar

Copyright information

© ASM International 2010

Authors and Affiliations

  • Tanja Steinke
    • 1
  • Georg Mauer
    • 1
  • Robert Vaßen
    • 1
  • Detlev Stöver
    • 1
  • Dan Roth-Fagaraseanu
    • 2
  • Matthew Hancock
    • 3
  1. 1.Forschungszentrum Jülich GmbHInstitut für Energieforschung IEF-1JülichGermany
  2. 2.Rolls-Royce Deutschland Ltd & Co KGDahlewitzGermany
  3. 3.Rolls-Royce plcDerbyUK

Personalised recommendations