Journal of Thermal Spray Technology

, Volume 19, Issue 3, pp 642–649

Coating of High-Alloyed, Ledeburitic Cold Work Tool Steel Applied by HVOF Spraying

  • B. Rajasekaran
  • G. Mauer
  • R. Vassen
  • A. Röttger
  • S. Weber
  • W. Theisen
Peer Reviewed


This study demonstrates the processing of a cold work tool steel (X220CrVMo13-4) coating using HVOF spraying. The coating formation was analyzed based on microstructure, phase, hardness, porosity, oxidation, and adhesion characteristics. An online diagnostic tool was utilized to find out the in-flight characteristics of powder such as temperature and velocity during the coating process to identify the influencing parameters to achieve dense cold work tool steel coatings with low oxidation. The influence of powder size, process parameters, and in-flight characteristics on the formation of cold work tool steel coatings was demonstrated. The results indicated that thick and dense cold work tool steel coatings with low oxidation can be obtained by the selection of appropriate powder size and process parameters.


bond coat cold work tool steel HVOF online diagnostic thermal spraying 


  1. 1.
    W. Theisen, HIP Cladding of Tools, Sixth International Tooling Conference, 2002, Karlstad University, Sweden, p 947-960.Google Scholar
  2. 2.
    W. Theisen and C. Broeckmann, HIP Cladding for Application in Mineral Processing, Proc. Sixth International Tribology Conference, Perth, Austrib, 2002, p 2-5.Google Scholar
  3. 3.
    A. Hoefter, W. Theisen, and C. Broeckmann, Quenching Simulation of PM Coated Tools, Transactions of Materials and Heat Treatment Proceeding of the 14th IFHTSE Congress, Vol 25, 2004, p 752-757Google Scholar
  4. 4.
    L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, Wiley, England, 1995Google Scholar
  5. 5.
    V.V. Sobolev, J.M. Guilemany, and J. Nutting, High Velocity Oxy-Fuel Spraying, Theory, Structure-Property Relationships and Applications, Maney Pub, UK, 2004, p 7-17Google Scholar
  6. 6.
    M. Behulova, R. Moravcik, M. Kusy, L. Caplovic, P. Grgac, and L. Stancek, Influence of Atomization on Solidification Microstructures in the Rapidly Solidified Powder of the Cr-Mo-V Tool Steel, Mater. Sci. Eng. A, 2001, 304-306, p 540-543CrossRefGoogle Scholar
  7. 7.
    E. Lugscheider, C. Herbst, and L. Zhao, Parameter Studies on High-Velocity Oxy-Fuel Spraying of MCrAlY Coatings, Surf. Coat. Technol., 1998, 108-109(1-3), p 16-23CrossRefGoogle Scholar
  8. 8.
    C.M. Hackett and G.S. Settles, The Influence of Nozzle Design on HVOF Spray Velocity and Temperature, Advances in Thermal Spray Science & Technology, C.C. Berndt and S. Sampath, Ed., Sept 11-15, 1995 (Houston, TX), ASM International, 1995, p 21.Google Scholar
  9. 9.
    L. Zhao, E. Lugscheider, A. Fischer, and A. Reimann, Thermal Spraying of a High Nitrogen Duplex Austenitic-Ferritic Steel, Surf. Coat. Technol., 2001, 141(2-3), p 208-215CrossRefGoogle Scholar
  10. 10.
    L. Zhao and Erich Lugscheider, Influence of the Spraying Process on the Properties of 316L Stainless Steel Coatings, Surf. Coat. Technol., 2002, 162, p 6-10CrossRefGoogle Scholar
  11. 11.
    K. Dobler, H. Kreye, and R. Schwetzke, Oxidation of Stainless Steel in the HVOF Process, J. Therm. Spray Technol., 2000, 9, p 407-413CrossRefADSGoogle Scholar
  12. 12.
    V.V. Sobolev and J.M. Guilemany, Effect of Oxidation of Droplet Flattening and Splat-Substrate Interaction in Thermal Spraying, J. Therm. Spray Technol., 1999, 8(4), p 523-530CrossRefADSGoogle Scholar
  13. 13.
    T.C. Hanson and G.S. Settles, Particle Temperature and Velocity Effects on the Porosity and Oxidation of an HVOF Corrosion Control Coating, J. Therm. Spray Technol., 2003, 12(3), p 403-415CrossRefADSGoogle Scholar
  14. 14.
    C.J. Li and Y.Y. Wang, Effect of Particle State on the Adhesive Strength of HVOF Sprayed Metallic Coating, J. Therm. Spray Technol., 2002, 11(4), p 523-529CrossRefADSGoogle Scholar
  15. 15.
    J. He, M. Ice, and E. Lavernia, Particle Melting Behaviour During HVOF Spraying, J. Therm. Spray Technol., 2001, 10(1), p 83-93CrossRefADSGoogle Scholar
  16. 16.
    D.I. Uhlenhau, J. Kradolfer, W. Püttgen, J.F. Löffler, and P.J. Uggowitzer, Structure and Properties of a Hypoeutectic Chromium Steel Processed in the Semi-Solid State, Acta Meter., 2006, 54, p 2727-2734CrossRefGoogle Scholar
  17. 17.
    F. Wang, H. Mao, D. Zhang, and X. Zhao, The Crack Control During Laser Cladding by Adding the Stainless Steel Net in the Coating, Appl. Surf. Sci., 2009, 255(21), p 8846-8854CrossRefADSGoogle Scholar

Copyright information

© ASM International 2009

Authors and Affiliations

  • B. Rajasekaran
    • 1
  • G. Mauer
    • 1
  • R. Vassen
    • 1
  • A. Röttger
    • 2
  • S. Weber
    • 3
  • W. Theisen
    • 2
  1. 1.Institute of Materials Synthesis and Processing (IEF-1)Research Centre, Institute of Energy ResearchJuelichGermany
  2. 2.Faculty of Mechanical Engineering, Institute for Materials, Chair of Materials TechnologyRuhr-University BochumBochumGermany
  3. 3.Helmholtz-Zentrum Berlin für Materialien und Energie GmbHBerlinGermany

Personalised recommendations