Advertisement

Journal of Thermal Spray Technology

, Volume 19, Issue 3, pp 620–634 | Cite as

An Experimental and Finite Element Study of Cold Spray Copper Impact onto Two Aluminum Substrates

  • Peter C. King
  • Gyuyeol Bae
  • Saden H. Zahiri
  • Mahnaz Jahedi
  • Changhee Lee
Peer Reviewed

Abstract

The effect of cold spray temperature and substrate hardness on particle deformation and adhesion has been studied, with particular emphasis on adiabatic shearing leading to melting. Copper particles were cold sprayed onto commercial purity (CP) aluminum and alloy 7050-T7451, with stagnation temperatures 200, 400, and 600 °C. Deposition efficiency, assisted by particle embedding, increased with temperature and was higher on the softer CP substrate. Crater surfaces, adhered particles, and interfaces were characterized by scanning electron microscopy, focused ion beam, and transmission electron microscopy. For comparison, the impact of 15 μm Cu particles was simulated using finite element modeling. A thin layer of material on the substrate-side of the interface was predicted to reach melting point on both substrates at higher impact velocities. Formation of a molten layer was found experimentally. At 600 °C, the effect of substrate heating by the gas jet could not be ignored.

Keywords

bonding cold gas dynamic spraying finite element modeling particle deformation 

Notes

Acknowledgments

This work was supported by a Korean Science and Engineering Foundation (KOSEF) grant funded by the Korean government (MOST) (No. 2006-02289). The authors would like to thank Jens Oqueka, from Helmut Schmidt University, University of the Federal Armed Forces, Hamburg, Germany, for his assistance in implementing some of the particle acceleration model into code.

References

  1. 1.
    A. Papyrin, V. Kosarev, S. Klinkov, A. Alhimov, and V. Fomin, Cold Spray Technology, Elsevier, Amsterdam, 2007Google Scholar
  2. 2.
    R.C. McCune, A.N. Papyrin, J.N. Hall, W.L. Riggs, and P.H. Zajchowski, An Exploration of the Cold Gas-Dynamic Spray Method for Several Materials Systems, Proceedings, 8th National Thermal Spray Conference, C.C. Berndt and S. Sampath, Eds., ASM International, Materials Park, OH, 1995, p 1-5Google Scholar
  3. 3.
    P.C. King, S.H. Zahiri, M. Jahedi, and J. Friend, Cold Spray Electroding of Piezoelectric Ceramic, Mater. Forum, 2007, 31, p 116-119Google Scholar
  4. 4.
    P.C. King, S.H. Zahiri, and M.Z. Jahedi, Rare Earth/Metal Composite Formation by Cold Spray, J. Therm. Spray Technol., 2007, 17(2), p 221-227CrossRefADSGoogle Scholar
  5. 5.
    T. Stoltenhoff, H. Kreye, and H.J. Richter, An Analysis of the Cold Spray Process and Its Coatings, J. Therm. Spray Technol., 2002, 11(4), p 542-550CrossRefADSGoogle Scholar
  6. 6.
    M. Grujicic, C.L. Zhao, W.S. DeRosset, and D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Design, 2004, 25(8), p 681-688CrossRefGoogle Scholar
  7. 7.
    P.C. King, S.H. Zahiri, and M.H. Jahedi, Focussed Ion Beam Micro-Dissection of Cold Sprayed Particles, Acta Mater., 2008, 56(19), p 5617-5626CrossRefGoogle Scholar
  8. 8.
    S. Guetta, M.H. Berger, F. Borit, V. Guipont, M. Jeandin, M. Boustie, F. Poitiers, Y. Ichikawa, and K. Ogawa, Influence of Particle Velocity on Adhesion of Cold-Sprayed Splats, Thermal Spray 2008: Crossing Borders, E. Lugscheider, Ed., ASM International, Materials Park, OH, 2008, Google Scholar
  9. 9.
    P.C. King, S.H. Zahiri, and M. Jahedi, Microstructural Refinement Within a Cold Sprayed Copper Particle, Metall. Mater. Trans. A, 2009, 40(9), p 2115-2123CrossRefGoogle Scholar
  10. 10.
    H. Assadi, F. Gartner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394CrossRefGoogle Scholar
  11. 11.
    G. Bae, Y. Xiong, S. Kumar, K. Kang, and C. Lee, General Aspects of Interface Bonding in Kinetic Sprayed Coatings, Acta Mater., 2008, 56(17), p 4858-4868CrossRefGoogle Scholar
  12. 12.
    M. Grujicic, J.R. Saylor, D.E. Beasley, W.S. DeRosset, and D. Helfritch, Computational Analysis of the Interfacial Bonding Between Feed-Powder Particles and the Substrate in the Cold-Gas Dynamic-Spray Process, Appl. Surf. Sci., 2003, 219(3-4), p 211-227CrossRefADSGoogle Scholar
  13. 13.
    R.C. Dykhuizen, M.F. Smith, D.L. Gilmore, R.A. Neiser, X. Jiang, and S. Sampath, Impact of High Velocity Cold Spray Particles, J. Therm. Spray Technol., 1999, 8(4), p 559-564CrossRefADSGoogle Scholar
  14. 14.
    A.P. Alkhimov, S.V. Klinkov, and V.F. Kosarev, Temperature Near the Contact Boundary at High-Velocity Collision of a Microparticle and a Surface, Phys. Mesomech., 2000, 3, p 53-57Google Scholar
  15. 15.
    X.-J. Ning, J.-H. Jang, H.-J. Kim, C.-J. Li, and C. Lee, Cold Spraying of Al-Sn Binary Alloy: Coating Characteristics and Particle Bonding Features, Surf. Coat. Technol., 2008, 202, p 1681-1687CrossRefGoogle Scholar
  16. 16.
    C.-J. Li, W.-Y. Li, and Y.-Y. Wang, Formation of Metastable Phases in Cold-Sprayed Soft Metallic Deposit, Surf. Coat. Technol., 2005, 198(1-3), p 469-473CrossRefGoogle Scholar
  17. 17.
    J. Wu, H. Fang, H. Kim, and C. Lee, High Speed Impact Behaviors of Al Alloy Particle onto Mild Steel Substrate During Kinetic Deposition, Mater. Sci. Eng. A, 2006, 417(1-2), p 114-119CrossRefGoogle Scholar
  18. 18.
    W.-Y. Li, C. Zhang, X. Guo, C.-J. Li, H. Liao, and C. Coddet, Study on Impact Fusion at Particle Interfaces and Its Effect on Coating Microstructure in Cold Spraying, Appl. Surf. Sci., 2007, 254(2), p 517-526CrossRefADSGoogle Scholar
  19. 19.
    S. Barradas, V. Guipont, R. Molins, M. Jeandin, M. Arrigoni, M. Boustie, C. Bolis, L. Berthe, and M. Ducos, Laser Shock Flier Impact Simulation of Particle-Substrate Interactions in Cold Spray, J. Therm. Spray Technol., 2007, 16(4), p 475-479CrossRefGoogle Scholar
  20. 20.
    S. Guetta, M. Berger, F. Borit, V. Guipont, M. Jeandin, M. Boustie, Y. Ichikawa, K. Sakaguchi, and K. Ogawa, Influence of Particle Velocity on Adhesion of Cold-Sprayed Splats, J. Therm. Spray Technol., 2009, 18(3), p 331–342CrossRefGoogle Scholar
  21. 21.
    A. Wank, B. Wielage, H. Podlesak, and T. Grund, High-resolution microstructural investigations of interfaces between light metal alloy substrates and cold gas-sprayed coatings, J. Therm. Spray Technol., 2006, 15(2), p 280-283CrossRefADSGoogle Scholar
  22. 22.
    A.V. Bolesta, V.M. Fomin, M.R. Sharafutdinov, and B.P. Tolochko, Investigation of Interface Boundary Occurring During Cold Gas-Dynamic Spraying of Metallic Particles, Nucl. Instrum. Meth. A, 2001, 470(1-2), p 249-252CrossRefADSGoogle Scholar
  23. 23.
    J.L. Robinson, Fluid Mechanics of Copper: Viscous Energy Dissipation in Impact Welding, J. Appl. Phys., 1977, 48(6), p 2202-2207CrossRefADSGoogle Scholar
  24. 24.
    V.K. Champagne, D. Helfritch, P. Leyman, S. Grendahl, and B. Klotz, Interface Material Mixing Formed by the Deposition of Copper on Aluminium by Means of the Cold Spray Process, J. Therm. Spray Technol., 2005, 14(3), p 330-334CrossRefADSGoogle Scholar
  25. 25.
    K. Balani, A. Agarwal, S. Seal, and J. Karthikeyan, Transmission Electron Microscopy of Cold Sprayed 1100 Aluminum Coating, Scripta Mater., 2005, 53(7), p 845-850CrossRefGoogle Scholar
  26. 26.
    Y. Xiong, K. Kang, G. Bae, S. Yoon, and C. Lee, Dynamic Amorphization and Recrystallization of Metals in Kinetic Spray Process, Appl. Phys. Lett., 2008, 92, p 194101CrossRefADSGoogle Scholar
  27. 27.
    K. Kim, M. Watanabe, K. Mitsuishi, K. Iakoubovskii, and S. Kuroda, Impact Bonding and Rebounding Between Kinetically Sprayed Titanium Particle and Steel Substrate Revealed by High-Resolution Electron Microscopy, J. Phys. D Appl. Phys., 2009, 42(6), p 5Google Scholar
  28. 28.
    R.C. Dykhuizen and M.F. Smith, Gas Dynamic Principles of Cold Spray, J. Therm. Spray Technol., 1998, 7(2), p 205-212CrossRefADSGoogle Scholar
  29. 29.
    W.Y. Li and C.J. Li, Optimal Design of a Novel Cold Spray Gun Nozzle at a Limited Space, J. Therm. Spray Technol., 2005, 14(3), p 391-396CrossRefADSGoogle Scholar
  30. 30.
    B. Jodoin, Cold Spray Nozzle Mach Number Limitation, J. Therm. Spray Technol., 2002, 11(4), p 496-507CrossRefADSGoogle Scholar
  31. 31.
    S.P. Pardhasaradhi, V. Venkatachalapathy, S.V. Joshi, and S. Govindan, Optical Diagnostics Study of Gas Particle Transport Phenomena in Cold Gas Dynamic Spraying and Comparison with Model Predictions, J. Therm. Spray Technol., 2008, 17(4), p 551-563CrossRefADSGoogle Scholar
  32. 32.
    J.D. Anderson, Modern Compressible Flow: with Historical Perspective, 3rd ed., McGraw-Hill, New York, 2003Google Scholar
  33. 33.
    Fluent 6.1 User’s Guide, ANSYS, Inc., Canonsburg, PAGoogle Scholar
  34. 34.
    C.B. Henderson, Drag Coefficients of Spheres in Continuum and Rarefied Flows, AIAA J., 1976, 14(6), p 707-708CrossRefADSGoogle Scholar
  35. 35.
    D.L. Gilmore, R.C. Dykhuizen, R.A. Neiser, T.J. Roemer, and M.F. Smith, Particle Velocity and Deposition Efficiency in the Cold Spray Process, J. Therm. Spray Technol., 1999, 8(4), p 576-582CrossRefADSGoogle Scholar
  36. 36.
    L.A. Giannuzzi and F.A. Stevie, A Review of Focused Ion Beam Milling Techniques for TEM Specimen Preparation, Micron, 1999, 30(3), p 197-204CrossRefGoogle Scholar
  37. 37.
    J. Li, T. Malis, and S. Dionne, Recent Advances in FIB-TEM Specimen Preparation Techniques, Mater. Charact., 2006, 57(1), p 64-70CrossRefGoogle Scholar
  38. 38.
    ABAQUSTM 6.7-2 User Manual, Dessault Systemes Simulia Corp., Providence, RI, 2007Google Scholar
  39. 39.
    G.R. Johnson, and W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, Proceedings of the 7th International Ballistics Symposium, 1983, p 541-547Google Scholar
  40. 40.
    Matweb, Available from: www.matweb.com
  41. 41.
    K.A. Dannemann, C.E. Anderson, and G.R. Johnson, Modeling the Ballistic Impact Performance of Two Aluminum Alloys, Modelling the Performance of Engineering Structural Materials II, D.R. Leseur and T.S. Srivatsan, Ed., TMS, 2001, p 63-74 Google Scholar
  42. 42.
    W. Herrmann and J.S. Wilbeck, Review of Hypervelocity Penetration Theories: Hypervelocity Impact Proceedings of the 1986 Symposium, Int. J. Impact Eng., 1987, 5(1-4), p 307-322CrossRefGoogle Scholar
  43. 43.
    L.E. Murr, S.A. Quinones, E. Ferreyra, T.A. Ayala, O.L. Valerio, F. Horz, and R.P. Bernhard, The Low-Velocity-to-Hypervelocity Penetration Transition for Impact Craters in Metal Targets, Mater. Sci. Eng. A, 1998, 256(1-2), p 166-182CrossRefGoogle Scholar
  44. 44.
    E. Irissou, J.G. Legoux, C. Moreau, and A.N. Ryabinin, How Cold is Cold Spray? An Experimental Study of the Heat Transfer to the Substrate in Cold Gas Dynamic Spraying, Thermal Spray 2008: Crossing Borders, E. Lugscheider, Ed., ASM International, Materials Park, OH, 2008Google Scholar
  45. 45.
    M.S. Anand, S.P. Murarka, and R.P. Agarwala, Diffusion of Copper in Nickel and Aluminum, J. Appl. Phys., 1965, 36(12), p 3860-3862CrossRefADSGoogle Scholar
  46. 46.
    N. Isono, P. Smith, D. Turnbull, and M. Aziz, Anomalous Diffusion of Fe in Liquid Al Measured by the Pulsed Laser Technique, Metall. Mater. Trans. A, 1996, 27(3), p 725-730CrossRefGoogle Scholar
  47. 47.
    K. Yokoyama, M. Watanabe, S. Kuroda, Y. Gotoh, T. Schmidt, and F. Gartner, Simulation of Solid Particle Impact Behavior for Spray Processes, Mater. Trans., 2006, 47(7), p 1697-1702CrossRefGoogle Scholar
  48. 48.
    J. Legoux, E. Irissou, and C. Moreau, Effect of Substrate Temperature on the Formation Mechanism of Cold-Sprayed Aluminum, Zinc and Tin Coatings, J. Therm. Spray Technol., 2007, 16(5), p 619-626CrossRefADSGoogle Scholar
  49. 49.
    M. Fukumoto, H. Wada, K. Tanabe, M. Yamada, E. Yamaguchi, A. Niwa, M. Sugimoto, and M. Izawa, Effect of Substrate Temperature on Deposition Behavior of Copper Particles on Substrate Surfaces in the Cold Spray Process, J. Therm. Spray Technol., 2007, 16(5), p 643-650CrossRefADSGoogle Scholar
  50. 50.
    K. Kang, S. Yoon, Y. Ji, and C. Lee, Oxidation Dependency of Critical Velocity for Aluminum Feedstock Deposition in Kinetic Spraying Process, Mater. Sci. Eng. A, 2008, 486(1-2), p 300-307CrossRefGoogle Scholar
  51. 51.
    G.R. Cowan and A.H. Holtzman, Flow Configurations in Colliding Plates: Explosive Bonding, J. Appl. Phys., 1963, 34(4), p 928-939CrossRefADSGoogle Scholar
  52. 52.
    B. Crossland and J.D. Williams, Explosive Welding, Met. Mater., 1970, 4, p 79-100Google Scholar
  53. 53.
    J. Vlcek, L. Gimeno, H. Huber, and E. Lugscheider, A Systematic Approach to Material Eligibility for the Cold-Spray Process, J. Therm. Spray Technol., 2005, 14(1), p 125-133CrossRefADSGoogle Scholar
  54. 54.
    D. Zhang, P.H. Shipway, and D.G. McCartney, Cold Gas Dynamic Spraying of Aluminium: The Role of Substrate Characteristics in Deposit Formation, J. Therm. Spray Technol., 2005, 14(1), p 109-116CrossRefADSGoogle Scholar

Copyright information

© ASM International 2009

Authors and Affiliations

  • Peter C. King
    • 1
  • Gyuyeol Bae
    • 2
  • Saden H. Zahiri
    • 1
  • Mahnaz Jahedi
    • 1
  • Changhee Lee
    • 2
  1. 1.CSIRO Materials Science and EngineeringClaytonAustralia
  2. 2.Kinetic Spray Coating Lab (NRL), Division of Materials Science and EngineeringHanyang UniversitySeoulRepublic of Korea

Personalised recommendations