Journal of Thermal Spray Technology

, Volume 19, Issue 1–2, pp 219–225 | Cite as

Suspension Plasma Spraying: Process Characteristics and Applications

  • Robert VaßenEmail author
  • Holger Kaßner
  • Georg Mauer
  • Detlev Stöver
Peer Reviewed


Suspension plasma spraying (SPS) offers the manufacture of unique microstructures which are not possible with conventional powdery feedstock. Due to the considerably smaller size of the droplets and also the further fragmentation of these in the plasma jet, the attainable microstructural features like splat and pore sizes can be downsized to the nanometer range. Our present understanding of the deposition process including injection, suspension plasma plume interaction, and deposition will be outlined. The drawn conclusions are based on analysis of the coating microstructures in combination with particle temperature and velocity measurements as well as enthalpy probe investigations. The last measurements with the water cooled stagnation probe gives valuable information on the interaction of the carrier fluid with the plasma plume. Meanwhile, different areas of application of SPS coatings are known. In this paper, the focus will be on coatings for energy systems. Thermal barrier coatings (TBCs) for modern gas turbines are one important application field. SPS coatings offer the manufacture of strain-tolerant, segmented TBCs with low thermal conductivity. In addition, highly reflective coatings, which reduce the thermal load of the parts from radiation, can be produced. Further applications of SPS coatings as cathode layers in solid oxide fuel cells (SOFC) and for photovoltaic (PV) applications will be presented.


photovoltaic solid oxide fuel cells suspension plasma spraying thermal barrier coatings 



The authors thank Mr. K. H. Rauwald, Mr. R. Laufs and Mr. Vondahlen (all IEF1, FZ Jülich) for the manufacture of the plasma-sprayed coatings. Special thanks to Dr. Alexandra Stuke for performing measurements of the optical properties of TBCs, Dr. Dag Hathiramani for preparation of SOFC components and Dr. Zeng Yi for preparation of several photovoltaic cells.


  1. 1.
    M. Gell, Application Opportunities for Nanostructured Materials and Coatings, Mater. Sci. Eng. A, 1995, 204(1-2), p 246-251CrossRefGoogle Scholar
  2. 2.
    J. Karthikeyan, C.C. Berndt, S. Reddy, J.-Y. Wang, A.H. King, and H. Herman, Nanomaterials Deposits Formed by DC Plasma Spraying of Liquid Feedstocks, J. Am. Ceram. Soc., 1998, 81(1), p 121-128CrossRefGoogle Scholar
  3. 3.
    F.-L. Toma, G. Bertrand, S.O. Chwa, C. Meunier, D. Klein, and C. Coddet, Comparative Study on the Photocatalytic Decomposition of Nitrogen Oxides Using TiO2 Coatings Prepared by Conventional Plasma Spraying and Suspension Plasma Spraying, Surf. Coat. Technol., 2006, 200(20-21), p 5855-5862CrossRefGoogle Scholar
  4. 4.
    E. Bouyer and F. Gitzhofer, The Suspension Plasma Spraying of Bioceramics by Induction Plasma, J. Mater. Sci. Mater. Med., 2000, 11(8), p 465-531CrossRefGoogle Scholar
  5. 5.
    C. Monterrubio-Badillo, H. Ageorges, T. Chartier, J.F. Coudert, and P. Fauchais, Preparation of LaMnO3 Perovskite Thin Films by Suspension Plasma Spraying for SOFC Cathodes, Surf. Coat. Technol., 2006, 200(12-13), p 3743-3756CrossRefGoogle Scholar
  6. 6.
    R. Siegert, “A Novel Process for the Liquid Feedstock Plasma Spray of Ceramic Coatings with Nanostructural Features,” Ph.D. Work, FZ-Jülich, 2006, Jül-4205Google Scholar
  7. 7.
    E.H. Jordan, L. Xie, X. Ma, M. Gell, N.P. Padture, B. Cetegen, A. Ozturk, J. Roth, T.D. Xiao, and P.E.C. Bryan, Superior Thermal Barrier Coatings Using Solution Precursor Plasma Spray, J. Therm. Spray Technol., 2004, 13(1), p 57-65CrossRefADSGoogle Scholar
  8. 8.
    J. Oberste Berghaus, S. Bouaricha, J.-G. Legoux, and C. Moreau, Injection Conditions and In-flight Particle States in Suspension Plasma Spraying of Alumina and Zirconia Nano-ceramics, Proceedings of the 2005 International Thermal Spray Conference, Thermal Spray: Building on 100 Years of Success, May 2-5, 2005 (Basel, Switzerland), ASM International, 2005, p 512-518Google Scholar
  9. 9.
    C. Delbos, J. Fazilleau, V. Rat, J.F. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying, Part 1: Suspension Injection and Behavior, Plasma Chem. Plasma Process., 2006, 26(4), p 371-391CrossRefGoogle Scholar
  10. 10.
    J. Grey, P.F. Jacobs, and M.P. Sherman, Calorimetric Probe for the Measurement of Extremely High Temperatures, Rev. Sci. Instrum., 1962, 33(7), p 738-741CrossRefADSGoogle Scholar
  11. 11.
    J.R. Fincke, W.D. Swank, S.C. Snyder, and D.C. Haggard, Enthalpy Probe Performance in Compressible Thermal Plasma Jets, Rev. Sci. Instrum., 1993, 64(12), p 3585-3593CrossRefADSGoogle Scholar
  12. 12.
    A. Capetti and E. Pfender, Probe Measurements in Argon Plasma Jets Operated in Ambient Argon, Plasma Chem. Plasma Process., 1989, 9(2), p 329-341CrossRefGoogle Scholar
  13. 13.
    W.L.T. Chen, J. Heberlein, and E. Pfender, Diagnostics of a Thermal Plasma Jet by Optical Emission Spectroscopy and Enthalpy Probe Measurements, Plasma Chem. Plasma Process., 1994, 14(3), p 317-332CrossRefGoogle Scholar
  14. 14.
    E. Pfender, Plasma Jet Behavior and Modeling Associated with the Plasma Spray Process, Thin Solid Films, 1994, 238, p 228-241CrossRefADSGoogle Scholar
  15. 15.
    M. Rahmane, G. Soucy, M.I. Boulos, and R. Henne, Fluid Dynamic Study of Direct Current Plasma Jets for Plasma Spraying Applications, J. Therm. Spray Technol., 1998, 7(3), p 349-356CrossRefADSGoogle Scholar
  16. 16.
    A. Denoirjean, O. Lagnoux, P. Fauchais, and V. Sember, Oxidation Control in Atmospheric Plasma Spraying: Comparison between Ar/H2/He and Ar/H2 Mixtures, Thermal Spray: Meeting the Challenges of the 21st Century, C. Coddet, Ed., May 25-29, 1998 (Nice, France), ASM International, 1998, p 809-814Google Scholar
  17. 17.
    J.-E. Döring, J.-L. Marqués, R. Vaßen, and D. Stöver, The Influence of Plasma Characteristics on Particle Properties During Plasma-Spraying of Yttria Stabilized Zirconia Using a Triplex Torch, Thermal Spray 2004: Advances in Technology and Application, on CD-ROM, May 10-12, 2004 (Osaka, Japan), Verlag für Schweißen und verwandte Verfahren DVS-Verlag, 2004Google Scholar
  18. 18.
    J.-E. Döring, R. Vaßen, and D. Stöver, Influence of Carrier Gas Flow and Liquid Injection in the Plasma Jet on Plasma Characteristics During the Atmospheric Plasma Spray Process, Thermal Spray 2003: Advancing the Science & Applying the Technology, C. Moreau and B. Marple, Ed., May 5-8, 2003 (Orlando), ASM International, 2003, p 641-647Google Scholar
  19. 19.
    G. Mauer, R. Vaßen, and D. Stöver, Comparison and Applications of DPV-2000 and Accuraspray-g3 Diagnostic Systems, J. Therm. Spray Technol., 2007, 16(3), p 414-424CrossRefADSGoogle Scholar
  20. 20.
    M.I. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas, Fundamentals and Applications, Plenum Press, New York, 1994Google Scholar
  21. 21.
    M. Rahmane, G. Soucy, and M.I. Boulos, Analysis of the Enthalpy Probe Technique for Thermal Plasma Diagnostics, Rev. Sci. Instrum., 1995, 66(6), p 3424-3431CrossRefADSGoogle Scholar
  22. 22.
    J. Fazilleau, C. Delbos, V. Rat, J.F. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying, Part 1: Suspension Injection and Behavior, Plasma Chem. Plasma Process., 2006, 26, p 371-391CrossRefGoogle Scholar
  23. 23.
    B. Ganz, W. Krebs, R. Koch, and S. Wittig, Spectral Emissivity Measurements of Thermal Barrier Coatings, AIAA/ASME Joint Thermophysics and Heat Transfer Conference, Vol 1, ASME 1998, p 291-296Google Scholar
  24. 24.
    A. Stuke: Optimierung der Reflektivität keramischer Wärmedämmschichten aus Ytttrium-teilstablisiertem Zirkoniumdioxid für den Einsatz auf metallischen Komponenten in Gasturbinen, Schriften des Forschungszentrums Jülich, Vol 4, ISSN 1866-1793Google Scholar
  25. 25.
    C. Delbos, J. Fazilleau, V. Rat, J.F. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying Part 2: Zirconia Particle Treatment and Coating Formation, Plasma Chem. Plasma Process., 2006, 26, p 393-414CrossRefGoogle Scholar
  26. 26.
    P. Bengtsson, T. Ericsson, and J. Wigren, Thermal Shock Testing of Burner Cans Coated with a Thick Thermal Barrier Coating, J. Therm. Spray Technol., 1998, 7(3), p 340-348CrossRefADSGoogle Scholar
  27. 27.
    R. Vaßen, H. Guo, and D. Stöver, Manufacture and Properties of Segmented Thermal Barrier Coatings, Proceedings of the 29th International Cocoa Beach Conference & Exposition, D. Zhu and W.M. Kriven, Ed., Jan 23-28, 2005 (Cocoa Beach, FL), Ceramic Engineering and Science Proceedings, Vol 26(38), p 37-45Google Scholar
  28. 28.
    R. Vaßen, H. Kaßner, A. Stuke, F. Hauler, D. Hathiramani, and D. Stöver, Advanced Thermal Spray Technologies for Applications in Energy System, Surf. Coat. Technol., 2008, 202(18), p 4432-4437CrossRefGoogle Scholar
  29. 29.
    H. Kaßner, R. Stuke, R. Vaßen, and D. Stöver, Influence of Microstructure on Thermal and Optical Properties of Suspension Plasma Sprayed (SPS) and Atmospheric Plasma Sprayed (APS) Coatings, e-Proceedings of the International Thermal Spray Conference & Exposition 2008 (ITSC), E. Lugscheider, Ed., Düsseldorf, Verlag für Schweißen und Verwandte Verfahren, 2008, p 585-589Google Scholar
  30. 30.
    G. Schiller, R. Henne, M. Lang, and M. Müller, DC and RF Plasma Processing for Fabrication of Solid Oxide Fuel Cells, Mater. Sci. Forum, 2003, 426-432, p 2539-2544CrossRefGoogle Scholar
  31. 31.
    D. Hathiramani, A. Mobeen, W. Fischer, P. Lersch, D. Sebold, R. Vaßen, D. Stöver, and R.J. Damani, Simultaneous Deposition of LSM and YSZ for SOFC Cathode Functional Layers by an APS Process, Proceedings of the International Thermal Spray Conference 2005, E. Lugscheider, Ed., Basel, Schweiz, 2.-4.Mai 2005, DVS German Welding Society, p 585-589Google Scholar
  32. 32.
    R. Vaßen, D. Hathiramani, J. Mertens, V. Haanappels, and I.C. Vincke, Manufacture of High Performance Solid Oxide Fuel Cells (SOFCs) with Atmospheric Plasma Spraying (APS), Surf. Coat. Technol., 2007, 202-203, p 499-508CrossRefGoogle Scholar
  33. 33.
    Y. Ando, S. Tobe, and H. Tahar, Dye Sensitized Solar Cells Using Titanium Oxide Photo Voltaic Devices Fabricated by Different Thermal Plasma Processes, Thermal Spray 2007, Global Coating Solutions, B. Marple, M.M. Hyland, Y.-C. Lau, R.S. Lima, and G. Montavon, Ed., ASM International, Ohio Park, 2007, p 1093-1098Google Scholar
  34. 34.
    R. Vaßen, Z. Yi, H. Kaßner, and D. Stöver, Suspension Plasma Spraying of TiO2 for the Manufacture of Photovoltaic Cells, Surf. Coat. Technol., 2009, 203(15), p 2146-2149CrossRefGoogle Scholar

Copyright information

© ASM International 2009

Authors and Affiliations

  • Robert Vaßen
    • 1
    Email author
  • Holger Kaßner
    • 1
  • Georg Mauer
    • 1
  • Detlev Stöver
    • 1
  1. 1.Forschungszentrum Jülich GmbH, Institut für Energieforschung (IEF-1)JülichGermany

Personalised recommendations