Journal of Thermal Spray Technology

, Volume 19, Issue 1–2, pp 286–293

Mullite and Mullite/ZrO2-7wt.%Y2O3 Powders for Thermal Spraying of Environmental Barrier Coatings

  • E. Garcia
  • J. Mesquita-Guimarães
  • P. Miranzo
  • M. I. Osendi
  • Y. Wang
  • R. S. Lima
  • C. Moreau
Peer Reviewed

Abstract

Mullite and mullite/ZrO2-7wt.%Y2O3 coatings could be thought among the main protective layers for environment barrier coatings (EBCs) to protect Si-based substrates in future gas turbine engines. Considering that feedstock of the compound powder is not commercially available, two powder processing routes Spray Drying (SD) and Flame Spheroidization (FS) were implemented for both types of powders. For each method the particle size, the morphology, and microstructure of the powder particles was determined. In addition, the effect of the heat treatment on the powder crystallinity and microstructure of FS powders was also investigated. To evaluate their suitability as feedstock materials, the powders were plasma sprayed and their in-flight particle characteristics monitored for coatings production. The powder morphology was correlated to the in-flight particle characteristics and splat morphology to gain insight about into the influence of powder characteristics on the coating formation.

Keywords

crystallinity environmental barrier coatings flame spheroidization mullite plasma spray powder feedstock spray drying zirconia 

References

  1. 1.
    S. Ueno, D.D. Jayaseelan, and T. Ohji, Development of Oxide-Based EBC for Silicon Nitride, Int. J. Appl. Ceram. Technol., 2004, 1(10), p 362-373Google Scholar
  2. 2.
    N. Miriyala, J. Kimmei, J. Price, K. More, P. Tortorelli, H. Eaton, G. Linsey, and E. Sun, The Evaluation of CFCC Liners after Field Testing in a Gas Turbine—III, Proceedings of ASME TURBO EXPO 2002, June 3-6, 2002 (Amsterdam, The Netherlands), ASME, 2002, p 1-10Google Scholar
  3. 3.
    R. Krishnamurthy, B.W. Sheldon, and J.A. Haynes, Stability of Mullite Protective Coatings for Silicon-Based Ceramics, J. Am. Ceram. Soc., 2005, 88(5), p 1099-1107CrossRefGoogle Scholar
  4. 4.
    S. Ueno, T. Ohji, and H.-T. Lin, Corrosion and Recession of Mullite in Water Vapor Environment, J. Eur. Ceram. Soc., 2008, 28, p 431-435CrossRefGoogle Scholar
  5. 5.
    K.N. Lee, Current Status of Environmental Barrier Coatings for Si-Based Ceramics, Surf. Coat. Technol., 2000, 33-34, p 1-7Google Scholar
  6. 6.
    K.N. Lee, R.A. Miller, N.S. Jacobson, and S. Nathan, New Generation of Plasma-Sprayed Mullite Coatings on Silicon Carbide, J. Am. Ceram. Soc., 1995, 78, p 705-710CrossRefGoogle Scholar
  7. 7.
    K.N. Lee and R.A. Miller, Oxidation Behavior of Mullite-Coated SiC and SiC/SiC Composites under Thermal Cycling Between Room Temperature and 1200°-1400 °C, J. Am. Ceram. Soc., 1996, 79, p 620-626Google Scholar
  8. 8.
    K.N. Lee, D.S. Fox, J.I. Eldrige, D. Zhu, R.C. Robinson, N.P. Bansal, and R.A. Miller, Upper Temperature Limit of Environmental Barrier Coatings Based on Mullite and BSAS, J. Am. Ceram. Soc., 2003, 86, p 1299-1306CrossRefGoogle Scholar
  9. 9.
    K.L. More, P.F. Tortorelli, L.R. Walter, J.B. Kimmel, N. Miriyala, J.R. Price, E.Y. Sun, and G.D. Linsey, Evaluating Environmental Barrier Coatings on Ceramic Matrix Composites After Engine and Laboratory Exposures, ASME paper 2002-GT-30630, IGTI 4 A, p 155-162Google Scholar
  10. 10.
    K.N. Lee, D.S. Fox, and N.P. Bansal, Rare Earth Silicate Environmental Barrier Coatings for SiC/SiC Composites and Si3N4 Ceramics, J. Eur. Ceram. Soc., 2005, 25, p 1705-1715CrossRefGoogle Scholar
  11. 11.
    I. Spitsberg and J. Steibel, Thermal and Environmental Barrier Coatings for SiC/SiC CMCs in Aircraft Engine Applications, Int. J. Appl. Ceram. Technol., 2004, 1, p 291-301Google Scholar
  12. 12.
    E. Withey, C. Peorak, R. Trice, G. Dickinson, and T. Taylor, Design of 7 wt% Y2O3-ZrO2/Mullite Plasma Sprayed Composite Coatings for Increased Creep Resistance, J. Eur. Ceram. Soc., 2007, 27, p 4675-4683CrossRefGoogle Scholar
  13. 13.
    G. Bertrand, P. Roy, C. Filiatre, and C. Coddet, Spray-dried Ceramic Powders: A Quantitative Correlation Between Slurry Characteristics and Shapes of the Granules, Chem. Eng. Sci., 2005, 60, p 95-102CrossRefGoogle Scholar
  14. 14.
    V. Viswanathan, K.E. Rea, A. Vaidya, and S. Sealw, Role of Spray Drying of Nanoagglomerates in Morphology Evolution in Nanostructured APS Coatings, J. Am. Ceram. Soc., 2008, 91(2), p 379-386CrossRefGoogle Scholar
  15. 15.
    X.Q. Cao, R. Vassen, S. Schwartz, W. Jungen, F. Tietz, and D. Stöever, Spray-Drying of Ceramics for Plasma-Spray Coating, J. Eur. Ceram. Soc., 2000, 20, p 2433-2439CrossRefGoogle Scholar
  16. 16.
    A. Rosenflanz, M. Frey, B. Endres, T. Anderson, E. Richards, and C. Schardt, Bulk Glasses and Ultrahard Nanoceramics Based on Alumina and Rare-earth Oxides, Nature, 2004, 430, p 761-764CrossRefPubMedADSGoogle Scholar
  17. 17.
    Y. Wang, R.S. Lima, C. Moreau, E. Garcia, J. Guimaraes, P. Miranzo, and M.I. Osendi, Mullite Coatings Produced by APS and SPS: Effect of Mullite Powder Morphology and Spray Processing on the Microstructure, Crystallinity and Mechanical Properties, Proceedings of ITSC 2009: Expanding Thermal Spray Performance to New Markets and Applications, B.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and G. Montavon, Ed., Pub. ASM International, Materials Park, OH, USA, 2009 (CD-ROM)Google Scholar
  18. 18.
    K. Srikrishna, G. Thomas, R. Martinez, M.P. Corral, S. De Aza, and J.S. Moya, Kaolinite-Mullite Reaction Series: A TEM Study, J. Mater. Sci., 1990, 25, p 607-612CrossRefADSGoogle Scholar
  19. 19.
    E. Tkalcec, S. Kurajica, and H. Ivankovic, Diphasic Aluminosilicate Gels with Two Stage Mullitization in Temperature Range of 1200-1300 °C, J. Eur. Ceram. Soc., 2005, 25, p 613-626CrossRefGoogle Scholar
  20. 20.
    C. Cano, E. Garcia, A.L. Fernandes, M.I. Osendi, and P. Miranzo, Mullite/ZrO2 Coatings Produced by Flame Spraying, J. Eur. Ceram. Soc., 2008, 28(11), p 2191-2197CrossRefGoogle Scholar
  21. 21.
    T. Höche, M. Deckwerth, and C. Rüssel, Partial Stabilization of Tetragonal Zirconia in Oxynitride Glass-Ceramics, J. Am. Ceram. Soc., 1998, 81(8), p 2029-2036CrossRefGoogle Scholar
  22. 22.
    M. McCoy, W.E. Lee, and A.H. Heuer, Crystallization of MgO-Al2O3-SiO2-ZrO2 Glasses, J. Am. Ceram. Soc., 1986, 69(3), p 292-296CrossRefGoogle Scholar
  23. 23.
    B.R. Marple, R.S. Lima, C. Moreau, S.E. Kruger, L. Xie, and M.R. Dorfman, Yttria-Stabilized Zirconia Thermal Barriers Sprayed Using N2-H2 and Ar-H2 Plasmas: Influence of Processing and Heat Treatment on Coating Properties, J. Therm. Spray Technol., 2007, 16(5-6), p 791-797CrossRefADSGoogle Scholar

Copyright information

© ASM International 2009

Authors and Affiliations

  • E. Garcia
    • 1
  • J. Mesquita-Guimarães
    • 1
  • P. Miranzo
    • 1
  • M. I. Osendi
    • 1
  • Y. Wang
    • 2
  • R. S. Lima
    • 2
  • C. Moreau
    • 2
  1. 1.Institute of Ceramics and Glass, CSICMadridSpain
  2. 2.National Research Council of Canada (NRC)BouchervilleCanada

Personalised recommendations