Journal of Thermal Spray Technology

, Volume 19, Issue 1–2, pp 495–501 | Cite as

Thin and Dense Ceramic Coatings by Plasma Spraying at Very Low Pressure

Peer Reviewed

Abstract

The very low pressure plasma spray (VLPPS) process operates at a pressure range of approximately 100 Pa. At this pressure, the plasma jet interaction with the surrounding atmosphere is very weak. Thus, the plasma velocity is almost constant over a large distance from the nozzle exit. Furthermore, at these low pressures the collision frequency is distinctly reduced and the mean free path is strongly increased. As a consequence, at low pressure the specific enthalpy of the plasma is substantially higher, but at lower density. These particular plasma characteristics offer enhanced possibilities to spray thin and dense ceramics compared to conventional processes which operate in the pressure range between 5 and 20 kPa. This paper presents some examples of gas-tight and electrically insulating coatings with low thicknesses <50 μm for solid oxide fuel cell applications. Furthermore, plasma spraying of oxygen conducting membrane materials such as perovskites is discussed.

Keywords

Al-Mg-spinel gas separation insulating layer low pressure plasma spraying (LPPS) membrane perovskite SOFC 

Notes

Acknowledgments

The cooperation with Dr. Uwe Maier and Dr. Thomas Kiefer, ElringKlinger AG, Dettingen/Erms, Germany in developing the SOFC insulation layers is gratefully acknowledged. This work was funded by the German Federal Ministry of Economics and Technology in the framework of the ZeuS III project. The authors also thank Andreas Hospach for his support in spraying and evaluating samples, Mark Kappertz for the metallographic preparations, Hiltrud Moitroux for taking the photo in Fig. 1, Dr. Doris Sebold for the SEM and EDX investigations (all Forschungszentrum Jülich GmbH, IEF-1), and Mierko Ziegner (ibid., IEF-2) for taking the XRD analysis.

References

  1. 1.
    J.-L. Dorier, M. Gindrat, C. Hollenstein, M. Loch, A. Refke, A. Salito, and G. Barbezat, Plasma Jet Properties in a New Spraying Process at Low Pressure for Large Area Thin Film Deposition, Thermal Spray 2001: New Surfaces for a New Millennium, C.C. Berndt, K.A. Khor, and E.F. Lugscheider, Ed., May 28-30, 2001 (Singapore), ASM International, 2001, p 759-764Google Scholar
  2. 2.
    B. Jodoin, M. Gindrat, J.-L. Dorier, C. Hollenstein, M. Loch, and G. Barbezat, Modelling and Diagnostics of a Supersonic DC Plasma Jet Expanding at Low Pressure, International Thermal Spray Conference, E. Lugscheider and C.C. Berndt, Ed., March 04-06, 2002 (Essen, Germany), Verlag für Schweißen und verwandte Verfahren DVS-Verlag, 2002, p 716-720Google Scholar
  3. 3.
    M. Gindrat, J.-L. Dorier, C. Hollenstein, M. Loch, A. Refke, A. Salito, and G. Barbezat, Effect of Specific Operating Conditions on the Properties of LPPS Plasma Jets Expanding at Low Pressure, International Thermal Spray Conference, E. Lugscheider and C.C. Berndt, Ed., March 04-06, 2002 (Essen, Germany), Verlag für Schweißen und verwandte Verfahren DVS-Verlag, 2002, p 459-464Google Scholar
  4. 4.
    C. Verdy, C. Zhang, D. Sokolov, H. Liao, D. Klein, and C. Coddet, Gas-tight Coatings Produced by Very Low Pressure Plasma Spraying, Thermal Spray 2008: Thermal Spray Crossing Borders, on CD-ROM, E. Lugscheider, Ed., June 02-04, 2008 (Maastricht, The Netherlands), Verlag für Schweißen und verwandte Verfahren, 2008, p 398-402Google Scholar
  5. 5.
    A. Refke, M. Gindrat, K. von Niessen, and R. Damani, LPPS Thin Film: A Hybrid Coating Technology between Thermal Spray and PVD for Functional Thin Coatings and Large Area Applications, Thermal Spray 2007: Global Coating Solutions, on CD-ROM, B.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and G. Montavon, Ed., May 14-16, 2007 (Beijing, China), ASM International, 2007, p 705-710Google Scholar
  6. 6.
    M. Gindrat, A. Refke, and R. Schmid, Process Characterization of LPPS Thin Film Processes with Optical Diagnostics, Thermal Spray 2007: Global Coating Solutions, on CD-ROM, B.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and G. Montavon, Ed., May 14-16, 2007 (Beijing, China), ASM International, 2007, p 826-831Google Scholar
  7. 7.
    R. Vaβen and D. Stöver, Development of Thin and Gastight Ceramic Coatings by Atmospheric Plasma-spraying, Thermal Spray 2006: Thermal Spray: Building on 100 Years of Success, on CD-ROM, B.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and J. Voyer, Ed., May 15-18, 2006 (Seattle, USA), 2006Google Scholar
  8. 8.
    C. Zhang, H. Liao, M. Planche, C. Coddet, C.-X. Li, G.-J. Yang, and C.-J. Li, Study on Gas Permeation Behavior Through Atmospheric Plasma-sprayed Yttria Stabilized Zirconia Coating, Thermal Spray 2008: Thermal Spray Crossing Borders, on CD-ROM, E. Lugscheider, Ed., June 02-04, 2008 (Maastricht, The Netherlands), Verlag für Schweißen und verwandte Verfahren DVS Verlag, 2008, p 410-415Google Scholar
  9. 9.
    C. Monterrubio-Badillo, H. Ageorges, T. Chartier, J.F. Coudert, and P. Fauchais, Preparation of LaMnO3 Perovskite Thin Films by Suspension Plasma Spraying for SOFC Cathodes, Surf. Coat. Tech., 2006, 200(12-13), p 3743-3756CrossRefGoogle Scholar
  10. 10.
    A. Ansar, G. Schiller, O. Patz, J. B. Gregoire, and Z. Ilhan, Plasma Sprayed Oxygen Electrode for Solid Oxide Fuel Cells and High Temperature Electrolyzers, 8th European Solid Oxide Fuel Cell Forum, on CD-ROM, June 30-July 04, 2008 (Luzern, Switzerland), p B1306Google Scholar
  11. 11.
    R. Henne, Solid Oxide Fuel Cells: A Challenge for Plasma Deposition Processes, J. Therm. Spray Techn., 2007, 16(3), p 381-403CrossRefADSGoogle Scholar
  12. 12.
    A. Refke, G. Barbezat, D. Hawley, and R.K. Schmid, Low Pressure Plasma Spraying (LPPS) as a Tool for the Deposition of Functional SOFC Components, Thermal Spray 2004: Advances in Technology and Application, on CD-ROM, May 10-12, 2004 (Osaka, Japan), Verlag für Schweißen und verwandte Verfahren DVS-Verlag, 2004, Applications III, p 26-30Google Scholar
  13. 13.
    D. Stöver, D. Hathiramani, R. Vaßen, and R.J. Damani, Plasma-sprayed Components for SOFC Applications, Surf. Coat. Tech., 2006, 201(5), p 2002-2005CrossRefGoogle Scholar
  14. 14.
    R. Vaßen, D. Hathiramani, J. Mertens, V.A.C. Haanappel, and I.C. Vinke, Manufacturing of High Performance Solid Oxide Fuel Cells (SOFCs) with Atmospheric Plasma Spraying (APS), Surf. Coat. Tech., 2007, 202(3), p 499-508CrossRefGoogle Scholar
  15. 15.
    R. Vaßen, A. Hospach, D. Hathiramani, J. Mertens, V. Haanappel, I.C. Vinke, and D. Stöver, High Performance Solid Oxide Fuel Cells (SOFCs) Made by Atmospheric Plasma Spraying (APS), Thermal Spray 2008: Thermal Spray Crossing Borders, on CD-ROM, E. Lugscheider, Ed., June 02-04, 2008 (Maastricht, The Netherlands), Verlag für Schweißen und verwandte Verfahren DVS Verlag, 2008, p 110-115Google Scholar
  16. 16.
    M. Gindrat, A. Refke, and R. Damani, APS-Triplex and LPPS-Thin Film as Advanced Plasma Spraying Technologies for Industrialization of SOFC Components, Thermal Spray 2008: Thermal Spray Crossing Borders, on CD-ROM, E. Lugscheider, Ed., June 02-04, 2008 (Maastricht, The Netherlands), Verlag für Schweißen und verwandte Verfahren DVS Verlag, 2008, p 100-105Google Scholar
  17. 17.
    J. Arnold, S.A. Ansar, U. Maier, and R. Henne, Insulating and Sealing of SOFC Devices by Plasma Sprayed Ceramic Layers, Thermal Spray 2008: Thermal Spray Crossing Borders, on CD-ROM, E. Lugscheider, Ed., June 02-04, 2008 (Maastricht, The Netherlands), Verlag für Schweißen und verwandte Verfahren DVS Verlag, 2008, p 95-99Google Scholar
  18. 18.
    A. Hospach, U. Maier, and R. Vaßen, Development of a Thermally Sprayed Insulation Layer for SOFCs, 8th European Solid Oxide Fuel Cell Forum, on CD-ROM, June 30-July 04, 2008 (Luzern, Switzerland), p A0907Google Scholar

Copyright information

© ASM International 2009

Authors and Affiliations

  1. 1.Forschungszentrum Jülich GmbHInstitut für Energieforschung IEF-1JülichGermany

Personalised recommendations