Journal of Thermal Spray Technology

, Volume 18, Issue 4, pp 578–592 | Cite as

Characterization of Microplasma Sprayed Hydroxyapatite Coating

  • Arjun Dey
  • Anoop K. MukhopadhyayEmail author
  • S. Gangadharan
  • Mithilesh K. Sinha
  • Debabrata Basu
Peer Reviewed


Microplasma sprayed (MIPS) HAP coatings on SS316L substrates were characterized by x-ray diffraction, Fourier transformed infrared spectroscopy, optical microscopy, scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM), atomic force microscopy and image analysis. The coating showed a high degree of crystallinity ~92%, a high porosity level of 20 vol.% and a moderate bonding strength of about 13 MPa. The displacement controlled three-point bend tests and associated results of optical microscopy indicated that crack deflection, crack branching, and also local crack bridging occurred during crack propagation in the coating. The nano-hardness (H) and Young’s modulus (E) of the MIPS-HAP coatings as measured by nanoindentation technique were about 6 and 92 GPa, respectively. The fracture toughness (K ic) of the coating was ~0.6 MPa·m0.5. From the nano-scratch experiments, the critical normal load at which localized microcracking led to delamination was measured to be ~400 mN.


characterizations coating hydroxyapatite microplasma spraying 



The authors are grateful to Director, Central Glass and Ceramic Research Institute (CGCRI), Kolkata, for his kind permission to publish this paper and to Dr. D. K. Bhattacharya, Head, Analytical Facility Division of CGCRI, for his kind encouragement during the course of this work. One of the authors (A.D.) also sincerely acknowledges the support and encouragements received from Prof. N. R. Bandyopadhyay of the School of Materials Science and Engineering, Bengal Engineering and Science University (BESU), Shibpur. In addition, the authors appreciate the infrastructural support received from all colleagues and particularly those received from the colleagues of the Mechanical Test Section and Bio Ceramics and Coating Division at CGCRI. Finally, the authors gratefully acknowledge financial support received from DST-SERC (Project No: GAP 0216) and CSIR (Network Project TAREMAC No: NWP 0027).


  1. 1.
    K.A. Gross and C.C. Berndt, Biomedical Application of Apatites, Rev. Mineral. Geochem., 2002, 48(1), p 631-672CrossRefGoogle Scholar
  2. 2.
    W. Tong, J. Chen, X. Li, Y. Cao, Z. Yang, J. Feng, and X. Zhang, Effect of Particle Size on Molten States of Starting Powder and Degradation of the Relevant Plasma-Sprayed Hydroxyapatite Coating, Biomaterials, 1996, 17(15), p 1507-1513CrossRefPubMedGoogle Scholar
  3. 3.
    L.L. Hench, Bioceramics, J. Am. Ceram. Soc., 1998, 81(7), p 1705-1733CrossRefGoogle Scholar
  4. 4.
    C.E. Mancini, C.C. Berndt, L. Sun, and A. Kucuk, Porosity Determinations in Thermally Sprayed Hydroxylapatite Coatings, J. Mater. Sci., 2001, 36(16), p 3891-3896CrossRefGoogle Scholar
  5. 5.
    R.S. Lima, K.A. Khor, H. Li, P. Cheang, and B.R. Marple, HVOF Spraying of Nanostructured Hydroxyapatite for Biomedical Applications, Mater. Sci. Eng. A, 2005, 396(1-2), p 181-187CrossRefGoogle Scholar
  6. 6.
    L. Zhao, K. Bobzin, F. Ernst, J. Zwick, and E. Lugscheider, Study on the Influence of Plasma Spray Processes and Spray Parameters on the Structure and Crystallinity of Hydroxylapatite Coatings, Materialwiss. Werkstoff., 2006, 37(6), p 516-520CrossRefGoogle Scholar
  7. 7.
    T.M. Sridhar, T.K. Arumugam, S. Rajeswari, and M. Subbaiyan, Electrochemical Behaviour of Hydroxyapatite-Coated Stainless Steel Implants, J. Mater. Sci. Lett., 1997, 16(23), p 1964-1966CrossRefGoogle Scholar
  8. 8.
    S. Kannan, A. Balamurugan, and S. Rajeswari, Development of Calcium Phosphate Coating on Type 316L SS In Vitro Response, Trend. Biomater. Artif. Org., 2002, 16(1), p 8-11Google Scholar
  9. 9.
    T.M. Sridhar, U.K. Mudali, and M. Subbaiyan, Sintering Atmosphere and Temperature Effects on Hydroxyapatite Coated Type 316L Stainless Steel, Corros. Sci., 2003, 45(10), p 2337-2359CrossRefGoogle Scholar
  10. 10.
    T.M. Sridhar, U.K. Mudali, and M. Subbaiyan, Preparation and Characterisation of Electrophoretically Deposited Hydroxyapatite Coatings on Type 316L Stainless Steel, Corros. Sci., 2003, 45(2), p 237-252CrossRefGoogle Scholar
  11. 11.
    A. Balamurugan, S. Kannan, and S. Rajeswari, Bioactive Sol-Gel Hydroxyapatite Surface for Biomedical Applications—In Vitro Study, Trend. Biomater. Artif. Org., 2002, 16(1), p 18-20Google Scholar
  12. 12.
    G. Ye and T. Troczynski, Hydroxyapatite Coatings by Pulsed Ultrasonic Spray Pyrolysis, Ceram. Int., 2008, 34(3), p 511-516CrossRefGoogle Scholar
  13. 13.
    A. Dey, A.K. Mukhopadhyay, S. Gangadharan, M.K. Sinha, and D. Basu, Development of Hydroxyapatite Coating by Microplasma Spraying, Mater. Manuf. Process., 2009 (in press)Google Scholar
  14. 14.
    A. Dey, A.K. Mukhopadhyay, S. Gangadharan, M.K. Sinha and D. Basu, Anisotropy of Elastic Modulus on Bioactive HAP Coating, 20th Annual General Meeting, Feb 10-12, 2009 (Kolkata, India), Materials Research Society of India (MRSI), 2009, p 110Google Scholar
  15. 15.
    A. Dey, A.K. Mukhopadhyay, S. Gangadharan, M.K. Sinha, D. Basu, and N.R. Bandyopadhyay, Nanoindentation Study of Microplasma Sprayed Hydroxyapatite Coating, Ceram. Int., 2009, 35(6), p 2295-2304CrossRefGoogle Scholar
  16. 16.
    A. Dey, A.K. Mukhopadhyay, S. Gangadharan, M.K. Sinha, and D. Basu, Mechanical Properties of Microplasma Sprayed HAP Coating, Interquadrennial Conference of International Congress on Fracture, B.K. Raghu Prasad and R. Narasimhan, Ed., Aug 3-7, 2008 (Bangalore, India), I. K. International Publishing House Pvt. Ltd., 2008, p 311-313Google Scholar
  17. 17.
    E. Landi, A. Tampieri, G. Celotti, and S. Sprio, Densification Behaviour and Mechanisms of Synthetic Hydroxyapatites, J. Eur. Ceram. Soc., 2000, 20(14-15), p 2377-2387CrossRefGoogle Scholar
  18. 18.
    ASTM C 633-79. Standard Test Method for Adhesion or Cohesive Strength of Fame-Sprayed CoatingsGoogle Scholar
  19. 19.
    Y.C. Yang and E. Chang, Influence of Residual Stress on Bonding Strength and Fracture of Plasma-Sprayed Hydroxyapatite Coatings on Ti-6Al-4V Substrate, Biomaterials, 2001, 22(13), p 1827-1836CrossRefPubMedGoogle Scholar
  20. 20.
    W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(6), p 1564-1583CrossRefADSGoogle Scholar
  21. 21.
    A.G. Evans, B.R. Lawn, and D.B. Marshall, Elastic/Plastic Indentation Damage in Ceramics: The Median/Radial Crack System, J. Am. Ceram. Soc., 1980, 63(9-10), p 574-581CrossRefGoogle Scholar
  22. 22.
    D.R. Dukino and M.V. Swain, Comparative Measurement of Fracture Toughness with Berkovich and Vickers Indenters, J. Am. Ceram. Soc., 1992, 75(12), p 3299-3304CrossRefGoogle Scholar
  23. 23.
    J. Chen and S.J. Bull, Assessment of the Toughness of Thin Coatings Using Nanoindentation Under Displacement Control, Thin Solid Films, 2006, 494(1-2), p 1-7CrossRefADSGoogle Scholar
  24. 24.
    L.L. Hench and J. Wilson, An Introduction to Bioceramics: Advance Series in Ceramics, Vol 1, World Scientific Publishing Co. Pte. Ltd, Singapore, 1993, p 229-231Google Scholar
  25. 25.
    J.G. Morales, J.T. Burgues, T. Boix, J. Fraile, and R.R. Clemente, Precipitation of Stoichiometric Hydroxyapatite by a Continuous Method, Cryst. Res. Technol., 2001, 36(1), p 15-26CrossRefGoogle Scholar
  26. 26.
    L. Sun, C.C. Berndt, and C.P. Grey, Phase Structural Investigations of Plasma Sprayed Hydroxyapatite Coating, Mater. Sci. Eng. A, 2003, 360(1-2), p 70-84CrossRefGoogle Scholar
  27. 27.
    S.J. Ding, T.H. Hung, and C.T. Kao, Immersion Behavior of Plasma Sprayed Modified Hydroxyapatite Coatings After Heat Treatment, Surf. Coat. Technol., 2003, 165(3), p 248-257CrossRefGoogle Scholar
  28. 28.
    M.P. Mahabole, R.C. Aiyer, C.V. Ramakrishna, B. Sreedhar, and R.S. Khairnar, Synthesis, Characterization and Gas Sensing Property of Hydroxyapatite Ceramic, Bull. Mater. Sci., 2005, 28(6), p 535-545CrossRefGoogle Scholar
  29. 29.
    S. Nath, K. Biswas, and B. Basu, Phase Stability and Microstructure Development in Hydroxyapatite-Mullite System, Scr. Mater., 2008, 58(12), p 1054-1057CrossRefGoogle Scholar
  30. 30.
    P. Fauchais, J.F. Coudert, A. Verdelle, M. Verdelle, A. Grimaud, and P. Roumilhac, State of the Art for the Understanding of the Physical Phenomenon Involved in Plasma Spraying at Atmospheric Pressure, Thermal Spray: Advances in Coatings Technology, D.L. Houk, Ed., Sept 14-17, 1987 (Orlando, FL), ASM International, 1987, p 11-18Google Scholar
  31. 31.
    C.Y. Yang, R.M. Lin, B.C. Wang, T.M. Lee, E. Chang, Y.S. Hang, and P.Q. Chen, In Vitro and In Vivo Mechanical Evaluations of Plasma-Sprayed Hydroxyapatite Coatings on Titanium Implants: The Effect of Coating Characteristics, J. Biomed. Mater. Res., 1997, 37(3), p 335-345zbMATHCrossRefPubMedGoogle Scholar
  32. 32.
    Y.C. Yang and E. Chang, The Bonding of Plasma-Sprayed Hydroxyapatite Coatings to Titanium: Effect of Processing, Porosity and Residual Stress, Thin Solid Films, 2003, 444(1-2), p 260-275CrossRefADSGoogle Scholar
  33. 33.
    Y.W. Gu, K.A. Khor, and P. Cheang, In Vitro Studies of Plasma-Sprayed Hydroxyapatite/Ti-6Al-4V Composite Coatings in Simulated Body Fluid SBF, Biomaterials, 2003, 24(9), p 1603-1611CrossRefPubMedGoogle Scholar
  34. 34.
    Y.C. Yang, Influence of Residual Stress on Bonding Strength of the Plasma-Sprayed Hydroxyapatite Coating After the Vacuum Heat Treatment, Surf. Coat. Technol., 2007, 201(16-17), p 7187-7193CrossRefGoogle Scholar
  35. 35.
    R.G.T. Geesink, K. De Groot, and P.A.K.T. Christel, Chemical Implant Fixation Using Hydroxyapatite Coatings, Clin. Orthop. Relat. Res., 1987, 225, p 147-170PubMedGoogle Scholar
  36. 36.
    B.C. Wang, E. Chang, C.Y. Yang, D. Tu, and C.H. Tasi, Characteristics and Osteoconductivity of Three Different Plasma-Sprayed Hydroxyapatite Coatings, Surf. Coat. Technol., 1993, 58(2), p 107-117CrossRefGoogle Scholar
  37. 37.
    E. Munting, M. Verhelpen, F. Li, and A. Vincent, CRC Handbook of Bioactive Ceramics, T. Yamamuro, L.L. Hench, and J. Wilson, Ed., CRC Press, FL, 1990, p 143-148Google Scholar
  38. 38.
    K. de Groot, C.P.A.T. Klein, J.G.C. Wolke, and J.M.A. de Blieck-Hogervorst, CRC Handbook of Bioactive Ceramics, T. Yamamuro, L.L. Hench, and J. Wilson, Ed., CRC Press, FL, 1990, p 133-142Google Scholar
  39. 39.
    H. Ji and P.M. Marquis, Effect of Heat Treatment on the Microstructure of Plasma-Sprayed Hydroxyapatite Coating, Biomaterials, 1993, 14(1), p 64-68CrossRefPubMedGoogle Scholar
  40. 40.
    M.J. Filiaggi, N.A. Coombs, and R.M. Pilliar, Characterization of the Interface in the Plasma-Sprayed HA Coating/Ti-6Al-4V Implant System, J. Biomed. Mater. Res., 1991, 25(10), p 1211-1229CrossRefPubMedGoogle Scholar
  41. 41.
    W.H. Duckworth, Discussion of Ryshkewitch Paper, J. Am. Ceram. Soc., 1953, 36(2), p 68CrossRefGoogle Scholar
  42. 42.
    G. Jiang and D. Shi, Coating of Hydroxyapatite on Highly Porous Al2O3 Substrate for Bone Substitutes, J. Biomed. Mater. Res. (Appl. Biomat.), 1998, 43(1), p 77-81CrossRefMathSciNetGoogle Scholar
  43. 43.
    Y.C. Yang, E. Chang, B.H. Hwang, and S.Y. Lee, Biaxial Residual Stress States of Plasma-Sprayed Hydroxyapatite Coatings on Titanium Alloy Substrate, Biomaterials, 2000, 21(13), p 1327-1337CrossRefPubMedGoogle Scholar
  44. 44.
    H.C. Gledhill, I.G. Turner, and C. Doyle, Direct Morphological Comparison of Vacuum Plasma Sprayed and Detonation Gun Sprayed Hydroxyapatite Coatings for Orthopaedic Applications, Biomaterials, 1999, 20(4), p 315-322CrossRefPubMedGoogle Scholar
  45. 45.
    D. Gauthier, J.M. Bouler, E. Aguado, P. Pilet, and G. Daculsi, Macroporous Biphasic Calcium Phosphate Ceramics: Influence of Macropore Diameter and Macroporosity Percentage on Bone Ingrowth, Biomaterials, 1998, 19(1-3), p 133-139CrossRefPubMedGoogle Scholar
  46. 46.
    L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, Wiley, Chichester, 1995, p 414Google Scholar
  47. 47.
    R.B. Heimann, Thermal Spraying of Biomaterials, Surf. Coat. Technol., 2006, 201(5), p 2012-2019CrossRefGoogle Scholar
  48. 48.
    C. Kumar, S.K. Nandi, A. Dey, P. Mukherjee, B. Kundu, S. Roy, and D. Basu, Evaluation of Plasma Spray Coated Hydroxyapatite and Bi-Phasic Calcium Phosphate Coated Pin Intra-Medullarly for Repair of Bone Defects in Rabbit Model, First International Conference on “NANOBIO” Tissue Engineering and Stem Cell Research Using Nanomaterials, organized by the Amrita Centre for Nano Sciences and Amrita Institute of Medical Sciences, p 60 in Book of Abstracts, Kochi, India, 17-19 Feb, 2009Google Scholar
  49. 49.
    S. Paolom, L. Matteo, and B. Luca, Residual Stresses in Plasma Sprayed Partially Stabilised Zirconia TBCs: Influence of the Deposition Temperature, Thin Solid Films, 1996, 278(1-2), p 96-103CrossRefGoogle Scholar
  50. 50.
    S. Takeuchi, M. Ito, and K. Takeda, Modelling of Residual Stress in Plasma-Sprayed Coatings: Effect of Substrate Temperature, Surf. Coat. Technol, 1990, 43-44(Part 1), p 426-435CrossRefGoogle Scholar
  51. 51.
    H. Li, L.Z. Sun, J.B. Li, and Z.G. Wang, X-Ray Stress Measurement and FEM Analysis of Residual Stress Distribution Near Interface in Bonded Ceramic/Metal Compounds, Scr. Mater., 1996, 34(9), p 1503-1508CrossRefGoogle Scholar
  52. 52.
    J.D. Lee, H.Y. Ra, K.T. Hong, and S.K. Hur, Analysis of Deposition Phenomena and Residual Stress in Plasma Spray Coatings, Surf. Coat. Technol., 1992, 56(1), p 27-37CrossRefGoogle Scholar
  53. 53.
    C. Ergun, R.H. Doremus, and W.A. Lanford, Interface Reaction/Diffusion in Hydroxylapatite-Coated SS316L and CoCrMo Alloys, Acta Mater., 2004, 52(16), p 4767-4772CrossRefGoogle Scholar
  54. 54.
    U. Senturk, R.S. Lima, C.R.C. Lima, and C.C. Berndt, Deformation of Plasma Sprayed Thermal Barrier Coatings, J. Eng. Gas Turb. Power, 2000, 122(3), p 387-392CrossRefGoogle Scholar
  55. 55.
    B.D. Ratner, A.S. Hoffman, F.J. Schoen, and J.E. Lemons, Biomaterials Science: An Introduction to Materials in Medicine, 2nd ed., Elsevier Academic Press, USA, 2004, p 143Google Scholar
  56. 56.
    A.R.J. Franco, G. Pintaúde, A. Sinatora, C.E. Pinedo, and A.P. Tschiptschin, The Use of a Vickers Indenter in Depth Sensing Indentation for Measuring Elastic Modulus and Vickers Hardness, Mater. Res., 2004, 7(3), p 483-491Google Scholar
  57. 57.
    J. Wen, Y. Leng, J. Chen, and C. Zhang, Chemical gradient in plasma-sprayed HA coatings, Biomaterials, 2000, 21(13), p 1339-1343CrossRefPubMedGoogle Scholar
  58. 58.
    C. Zhang, Y. Leng, and J. Chen, Elastic and Plastic Behavior of Plasma-Sprayed Hydroxyapatite Coatings on a Ti–6Al–4V Substrate, Biomaterials, 2001, 22(11), p 1357-1363CrossRefPubMedGoogle Scholar
  59. 59.
    K.A. Khor, H. Li, and P. Cheang, Characterization of the Bone-Like Apatite Precipitated on High Velocity Oxy-Fuel HVOF Sprayed Calcium Phosphate Deposits, Biomaterials, 2003, 24(5), p 769-775CrossRefPubMedGoogle Scholar
  60. 60.
    G.J. Cheng, D. Pirzada, M. Cai, P. Mohanty, and A. Bandyopadhyay, Bioceramic Coating of Hydroxyapatite on Titanium Substrate with Nd-YAG Laser, Mater. Sci. Eng. C, 2005, 25(4), p 541-547CrossRefGoogle Scholar
  61. 61.
    T.G. Nieh, A.F. Jankowski, and J. Koike, Processing and Characterization of Hydroxyapatite Coatings on Titanium Produced by Magnetron Sputtering, J. Mater. Res., 2001, 16(11), p 3238-3245CrossRefADSGoogle Scholar
  62. 62.
    T.G. Nieh, B.W. Choi, and A.F. Jankowski, Synthesis and Characterization of Porous Hydroxyapatite and Hydroxyapatite Coatings, A report submitted to Minerals, Metals, and Materials Society Annual Meeting and Exhibition, New Orleans, LA, Feb 11-15, 2001Google Scholar
  63. 63.
    R.W. Rice, Porosity Effects on Machining Direction-Strength Anisotropy and Failure Mechanisms, J. Am. Ceram. Soc., 1994, 77(8), p 2232-2236CrossRefGoogle Scholar
  64. 64.
    H. Li, K.A. Khor, and P. Cheang, Young’s Modulus and Fracture Toughness Determination of High Velocity Oxy-Fuel-Sprayed Bioceramic Coatings, Surf. Coat. Technol., 2002, 155(1), p 21-32CrossRefGoogle Scholar
  65. 65.
    H. Li, K.A. Khor, and P. Cheang, Titanium Dioxide Reinforced Hydroxyapatite Coatings Deposited by High Velocity Oxy-Fuel HVOF Spray, Biomaterials, 2002, 23(1), p 85-91CrossRefPubMedGoogle Scholar
  66. 66.
    L. Fu, K.A. Khor, and J.P. Lim, Yttria Stabilized Zirconia Reinforced Hydroxyapatite Coatings, Surf. Coat. Technol., 2000, 127(1), p 66-75CrossRefGoogle Scholar
  67. 67.
    L. Fu, K.A. Khor, and J.P. Lim, Processing, Microstructure and Mechanical Properties of Yttria Stabilized Zirconia Reinforced Hydroxyapatite Coatings, Mater. Sci. Eng. A, 2001, 316(1-2), p 46-51CrossRefGoogle Scholar
  68. 68.
    M. Wang, X.Y. Yang, K.A. Khor, and Y. Wang, Preparation and Characterization of Bioactive Monolayer and Functionally Graded Coatings, J. Mater. Sci.: Mater. Med., 1999, 10(5), p 269-273CrossRefGoogle Scholar
  69. 69.
    K. Balani, R. Anderson, T. Laha, M. Andara, J. Tercero, E. Crumpler, and A. Agarwal, Plasma-Sprayed Carbon Nanotube Reinforced Hydroxyapatite Coatings and Their Interaction with Human Osteoblasts In Vitro, Biomaterials, 2007, 28(4), p 618-624CrossRefPubMedGoogle Scholar
  70. 70.
    K. Cheng, S. Zhang, W. Weng, K.A. Khor, S. Miao, and Y. Wang, The Adhesion Strength and Residual Stress of Colloidal-Sol Gel Derived β-Tricalcium-Phosphate/Fluoridated-Hydroxyapatite Biphasic Coatings, Thin Solid Films, 2008, 516(10), p 3251-3255CrossRefADSGoogle Scholar

Copyright information

© ASM International 2009

Authors and Affiliations

  • Arjun Dey
    • 1
    • 2
  • Anoop K. Mukhopadhyay
    • 2
    Email author
  • S. Gangadharan
    • 1
  • Mithilesh K. Sinha
    • 1
  • Debabrata Basu
    • 1
  1. 1.Bio-Ceramics and Coating DivisionCentral Glass and Ceramic Research InstituteKolkataIndia
  2. 2.Mechanical Test Section, Analytical Facility DivisionCentral Glass and Ceramic Research InstituteKolkataIndia

Personalised recommendations