Journal of Thermal Spray Technology

, Volume 19, Issue 1–2, pp 303–310

Atmospheric Plasma Spraying of High Melting Temperature Complex Perovskites for TBC Application

  • M. O. Jarligo
  • D. E. Mack
  • G. Mauer
  • R. Vaßen
  • D. Stöver
Peer Reviewed
  • 274 Downloads

Abstract

High melting materials have always been very attractive candidates for materials development in thermal barrier coating (TBC) applications. Among these materials, complex perovskites with Ba(Mg1/3Ta2/3)O3 and La(Al1/4Mg1/2T1/4)O3 compositions have been developed and deposited in TBC systems by atmospheric plasma spraying. Spray parameters were optimized and in-flight particle temperatures were recorded using Accuraspray-g3 and DPV 2000. Plasma sprayed coatings were found to undergo non-stoichiometric decomposition of components which could have contributed to early failure of the coatings. Particle temperature diagnostics suggest that gun power of ~15 kW or lower where majority of the particles have already solidified upon impact to the substrate could probably prevent the decomposition of phases. Additionally, it has been found that the morphology of the powder feedstock plays a critical role during atmospheric plasma spraying of complex perovskites.

Keywords

atmospheric plasma sprayed (APS) coatings gas turbine coatings particle diagnostics perovskite ceramics 

References

  1. 1.
    N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296, p 280-284CrossRefPubMedADSGoogle Scholar
  2. 2.
    A.S. Bhalla, R. Guo, and R. Roy, The Perovskite Structure—A Review of its Role in Ceramic Science and Technology, Mater. Res. Innovat., 2000, 4, p 3-26CrossRefGoogle Scholar
  3. 3.
    R. Guo, A.S. Bhalla, and L.E. Cross, Ba(Mg1/3Ta2/3)O3 Single Crystal Fiber Grown by the Laser Heated Pedestal Growth Technique, J. Appl. Phys., 1994, 75, p 4704-4708CrossRefADSGoogle Scholar
  4. 4.
    Y.-L. Kim and P.M. Woodward, Crystal Structures and Dielectric Properties of Ordered Double Perovskites Containing Mg2+ and Ta5+, J. Solid State Chem., 2007, 180, p 2798-2807CrossRefADSGoogle Scholar
  5. 5.
    M.O. Jarligo, D.E. Mack, R. Vassen, and D. Stöver, Application of Plasma Sprayed Complex Perovskites as Thermal Barrier Coatings, J. Therm. Spray Technol., 2009, 18, p 187-193CrossRefADSGoogle Scholar
  6. 6.
    A. Ansar, G. Schiller, O. Patz, J.B. Gregoire, and Z. Ilhan, Plasma Sprayed Oxygen Electrode for Solid Oxide Fuel Cells and High Temperature Electrolyzers, Thermal Spray 2008: Crossing Borders, on CD-ROM, E. Lugscheider, Ed., June 2-4, 2008 (Maastricht, The Netherlands), DVSGoogle Scholar
  7. 7.
    G. Schiller, M. Müller, and F. Gitzhofer, Preparation of Perovskite Powders and Coatings by Radio Frequency Suspension Plasma Spraying, J. Therm. Spray Technol., 1999, 8, p 389-392CrossRefADSGoogle Scholar
  8. 8.
    C. Zhang, W.-Y. Li, H. Liao, C.-J. Li, C.-X. Li, and C. Coddet, Microstructure and Electrical Conductivity of Atmospheric Plasma-Sprayed LSM/YSZ Composite Cathode Materials, J. Therm. Spray Technol., 2007, 16, p 1005-1010CrossRefADSGoogle Scholar
  9. 9.
    G. Mauer, R. Vaßen, and D. Stöver, Comparison and Applications of DPV-2000 and Accuraspray-g3 Diagnostic Systems, J. Therm. Spray Technol., 2007, 16, p 414-424CrossRefADSGoogle Scholar
  10. 10.
    W. Zhang and S. Sampath, A Universal Method for Representation of In-Flight Particle Characteristics in Thermal Spray Processes, J. Therm. Spray Technol., in pressGoogle Scholar
  11. 11.
    R. McPherson, The Enthalpy of Formation of Aluminium Titanate, J. Mater. Sci., 1973, 8, p 851-858CrossRefADSGoogle Scholar
  12. 12.
    M. Vardelle, P. Fauchais, A. Vardelle, K. Li, B. Dussoubs, and N. Themelis, Controlling Particle Injection in Plasma Spraying, J. Therm. Spray Technol., 2001, 10(2), p 267-284CrossRefADSGoogle Scholar
  13. 13.
    P. Fauchais, Understanding Plasma Spraying, J. Phys. D: Appl. Phys., 2004, 37, p R86-R108CrossRefADSGoogle Scholar
  14. 14.
    R. Henne, Solid Oxide Fuel Cells: A Challenge for Plasma Deposition Processes, J. Therm. Spray Technol., 2007, 16, p 381-403CrossRefADSGoogle Scholar
  15. 15.
    Y. Fang, A. Hu, Y. Gu, and Y.-J. Oh, Synthesis of Ba(Mg1/3Ta2/3)O3 Microwave Dielectrics by Solid State Processing, J. Eur. Ceram. Soc, 2003, 23, p 2497-2502CrossRefGoogle Scholar
  16. 16.
    C. Zhang, H.L. Liao, W.Y. Li, G. Zhang, C. Coddet, C.J. Li, C.X. Li, and X.J. Ning, Characterization of SOFC Electrolyte Deposition by Atmospheric Plasma Spraying and Low Pressure Plasma Spraying, J. Therm. Spray Technol., 2006, 15(4), p 598-603CrossRefADSGoogle Scholar
  17. 17.
    R. Henne, T. Franco, and R. Ruckdäschel, High-Velocity DC-VPS for Diffusion and Protecting Barrier Layers in Solid Oxide Fuel Cells (SOFCs), J. Therm. Spray Technol., 2006, 15, p 695-700CrossRefADSGoogle Scholar
  18. 18.
    G. Mauer, R. Vaßen, and D. Stöver, Preliminary Study on the Triplex Pro™-200 Gun for Atmospheric Plasma Spraying of Ytrria-Stabilized Zirconia, Surf. Coat. Technol., 2008, 202, p 4374-4381CrossRefGoogle Scholar
  19. 19.
    G. Mauer, R. Vaßen, and D. Stöver, Detection of Melting Temperatures and Sources of Errors Using Two-Color Pyrometry During In-Flight Measurements of Atmospheric Plasma-Sprayed Particles, Int. J. Thermophys., 2008, 29, p 764-786CrossRefGoogle Scholar

Copyright information

© ASM International 2009

Authors and Affiliations

  • M. O. Jarligo
    • 1
  • D. E. Mack
    • 1
  • G. Mauer
    • 1
  • R. Vaßen
    • 1
  • D. Stöver
    • 1
  1. 1.Institut für Energieforschung (IEF-1), Forschungszentrum Jülich GmbHJülichGermany

Personalised recommendations