Skip to main content
Log in

Multiscale Model on Deposition Behavior of Agglomerate Metal Particles in a Low-Temperature High-Velocity Air Fuel Spraying Process

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

A multiscale model was constructed for agglomerate metal particle deposition in a low-temperature high-velocity air fuel (LTHVAF) thermal spraying process using finite element analysis (FEA) and smoothed particle hydrodynamics (SPH). Here, the agglomerate particle impact on the substrate is simplified to three states. Then, the corresponding model is selected. The simulated results show that the temperature and velocity of agglomerate particle can affect the effective temperature and plastic strain in the contact interface for increasing particle energy. At the microscale, the deformation of the deposited particle might coarsen the coating surface to the extent that the critical velocity of the metal particle would decrease. It indicates that the agglomerate particle might splash when it impacts on the substrate. The transient melting can be ascertained at an angle in an approach to the achievement of intermetallics combined with the modeling of the particle penetrating into the substrate. In this process, the effective strain of an agglomerate particle at the nanoscale is less than that at microscale, but the surface area ratio at nanoscale is large. The uncompacted state of the agglomerate particle can lead to a turbulent force when the agglomerate particle deposits on the substrate, which can reduce the penetration performance of the particle. This behavior can decrease the stress-strain of substrate and cause the cracked particle to sparkle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ε*:

strain rate

\( \varepsilon_{\text{eff}}^{\text{p}} \) :

effective plastic strain

γ0 :

Gruneisen γ

μ:

relative volume

ρ:

density

σeff :

effective stress

A, B, N, C, M, D, S 1, S 2, S 3, γ0, and a :

input constant parameters

a :

first-order volume correction to γ0

C P :

particle heat capacity

E :

internal energy per initial volume

f j :

quantity f for neighbor particle

h :

distance

m j :

mass

n :

number of neighbor particles

P :

mean stress (pressure)

r j :

position

S 1, S 2, and S 3 :

the coefficients of the slope of the u su p curve

T :

temperature

T m :

melt temperature

T ref :

reference temperature

W :

smoothing kernels

References

  1. X. Yuan, H. Wang, G. Hou, and B. Zha, Numerical Modeling of a Low Temperature High Velocity Air Fuel Spraying Process with Injection of Liquid and Metal Particles, J. Therm. Spray Technol., 2006, 15(3), p 413-421

    Article  ADS  CAS  Google Scholar 

  2. S.V. Klinkov, V.F. Kosarev, and M. Rein, Cold Spray Deposition: Significance of Particle Impact Phenomena, Aerosp. Sci. Technol., 2005, 9, p 582-591

    Article  CAS  Google Scholar 

  3. B. Zha, H. Wang, and K. Xu, Microstructure and Property of LTHVOF Sprayed Copper Coatings, Proc. ITSC2005Thermal Spray Connects: Explore Its Surfacing Potential! E. Lugscheider, Ed., May 2-4, 2005 (Basel, Switzerland), 2005

  4. G Wei, H. Xiong, L. Zheng, and H. Zhang, An Advanced Ceramic Coating Buildup Model for Thermal Spray Processes, Proc. ITSC2004Thermal Spray Solutions: Advance in Technology and Application, May 10-12, 2004 (Osaka, Japan), 2004

  5. R. Dhiman and S. Chandra, Predicting Splat Morphology in a Thermal Spray Process, C. Moreau and B. Marple, Eds., ASM International, Materials Park, OH, 2003, p 207-213

  6. A. Hansbo and P. Nylen, Models for the Simulation of Spray Deposition and Robot Motion Optimization in Thermal Spraying of Rotating Objects, Surf. Coat. Technol., 1999, 122, p 191-201

    Article  CAS  Google Scholar 

  7. S. Barradas, R. Molins, and M. Jeandin, Laser Shock Flier Impact Simulation of Particle-Substrate Interactions in Cold Spray, Proc. ITSC2005Thermal Spray Connects: Explore Its Surfacing Potential!, May 2-4, 2005 (Basel, Switzerland), 2005

  8. J. Shimizu and E. Ohmura, Molecular Dynamics Simulation on Flattening Process of a High-Temperature and High-Speed Droplet, Proc. ITSC2004—Thermal Spray Solutions: Advance in Technology and Application, May 10-12, 2004 (Osaka, Japan), 2004

  9. D. Shi, M. Li, and P.D. Christofides, Diamond Jet Hybrid HVOF Thermal Spray: Rule-Based Modeling of Coating Microstructure, Ind. Eng. Chem. Res., 2004, 43, p 3653-3665

    Article  CAS  Google Scholar 

  10. M. Li and P.D. Christofides, Multi-scale Modeling and Analysis of an Industrial HVOF Thermal Spray Process, Chem. Eng. Sci., 2005, 60, p 3649-3669

    Article  CAS  Google Scholar 

  11. H. Gao, L. Zhao, D. Zeng, and L. Gao, Molecular Dynamics Simulation of Au Nano-scale Particle Deposited on Au Surface During Cold Spraying, Acta Metall. Sin., Nov 2006, 42(11), p 1158-1164 (in Chinese)

    CAS  Google Scholar 

  12. C. Berndt, Thermal Spray Processing of Nanoscale Materials, J. Therm. Spray Technol., 2001, 7(3), p 147-181

    Article  ADS  Google Scholar 

  13. X. Jiang, E. Jordan, L. Shaw, and M. Gell,. Deformation Behavior of Nanostructured Ceramic Deposited by Thermal Plasma Spray, J. Mater. Sci. Technol., 2004, 20(4), p 479-480

    CAS  Google Scholar 

  14. P.W. Cleary, M. Prakash, and J. Ha, Novel Applications of Smoothed Particle Hydrodynamics (SPH) in Metal Forming, J. Mater. Process. Technol., 2006, 177, p 41-48

    Article  CAS  Google Scholar 

  15. Y. Meleán, L.D.G. Sigalotti, and A. Hasmy, On the SPH Tensile Instability in Forming Viscous Liquid Drops, Comput. Phys. Commun., 2004, 157, p 191-200

    Article  ADS  Google Scholar 

  16. F. Colin, R. Egli, and F.Y. Lin, Computing a Null Divergence Velocity Field Using Smoothed Particle Hydrodynamics, J. Comput. Phys., 2006, 217, p 680-692

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. J.O. Hallquist, LS-DYNA Theoretical Manual, Livermore Software Technology Corporation, Livermore, CA, 1991–1998, p 17.3

  18. G.R. Johnson and W.H. Cook, Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures, Eng. Fract. Mech., 1985, 21, p 31-48

    Article  Google Scholar 

  19. T. Özel and E. Zeren, Finite Element Modeling of Stresses Induced by High Speed Machining with Round Edge Cutting Tools, Proc. 2005 ASME International Mechanical Engineering Congress & Exposition, Nov 5-11, 2005 (Orlando, FL), 2005

  20. B. Banerjee, “MPM Validation: Sphere-cylinder Impact: Medium Resolution Simulations,” Report No. C-SAFE-CD-IR-04-003, August 2004

  21. Y.Y. Ying, T. Hua, D. Cheng da, H. Jianbo, and Ch. Da-Nian, Sound Velocity and Release Behavior of Shock-Compressed Ly12 Al, Chin. Phys. Lett., 2005, 22, p 1742-1745

    Article  ADS  Google Scholar 

  22. V. Panov, “Modelling of Behaviour of Metals at High Strain Rates,” Ph.D. thesis, School of Engineering, Cranfield University, 2005-2006

  23. M. Omang, S. Børve, and J. Trulsen, SPH in Spherical and Cylindrical Coordinates, J. Comput. Phys., 2006, 213, p 391-412

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. D. Zhang, P.H. Shipway, and D.G. McCartney, Particle-Substrate Interactions in Cold Gas Dynamic Spraying, Thermal Spray 2003: Advancing in the Science & Applying the Technology, C. Moreau and B. Marple, Ed., ASM International, Materials Park, OH, 2003, p 45-52

    Google Scholar 

  25. A.P. Alkimov, V.F. Kosarev, and A.N. Papyrin, A Method of Cold Gas Dynamic Deposition, Dokl. Akad. Nauk SSSR, 1990, 315(1), p 1062-1065

    Google Scholar 

  26. C. Li, W. Li, and H. Liao, Examination of the Critical Velocity for Deposition of Particles in Cold Spraying, J Therm. Spray Technol., 2006, 15(2), p 212-222

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojing Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, X., Zha, B., Hou, G. et al. Multiscale Model on Deposition Behavior of Agglomerate Metal Particles in a Low-Temperature High-Velocity Air Fuel Spraying Process. J Therm Spray Tech 18, 411–420 (2009). https://doi.org/10.1007/s11666-009-9322-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-009-9322-5

Keywords

Navigation