Advertisement

Two-Directional Nodal Model for Co-Condensation Growth of Multicomponent Nanoparticles in Thermal Plasma Processing

  • Masaya Shigeta
  • Takayuki Watanabe
Peer Reviewed

Abstract

A more precise but easy-to-use model is developed and proposed to clarify nanoparticle growth with two-component co-condensation in thermal plasma processing. Computations performed for the molybdenum-silicon and titanium-silicon systems demonstrate that the model quantitatively estimates both the particle size distribution and the composition distribution of the silicide nanoparticles produced through co-condensation as well as nucleation and coagulation. The model also successfully obtains information that cannot be acquired by any other models. As a consequence, the detailed growth mechanisms of the silicide nanoparticles are eventually revealed. The present model is thus an “adaptable” and useful tool for analyzing nanoparticle growth processes, including co-condensation, with sufficient accuracy.

Keywords

modeling nanoparticle numerical simulation silicide thermal plasma 

Notes

Acknowledgment

This work was supported by the Japan Society for the Promotion of Science, Grant-in-Aid for Young Scientists (B) (20760106).

References

  1. 1.
    T. Sato, M. Shigeta, D. Kato, and H. Nishiyama, Mixing and Magnetic Effects on a Nonequilibrium Argon Plasma Jet, International Journal of Thermal Sciences, 2001, 40(3), p. 273-278.CrossRefGoogle Scholar
  2. 2.
    M. Shigeta, T. Sato, and H. Nishiyama, Computational simulation of a particle-laden RF inductively coupled plasma with seeded potassium, International Journal of Heat and Mass Transfer, 2004, 47(4), p. 707-716.CrossRefGoogle Scholar
  3. 3.
    M. Shigeta and H. Nishiyama, Numerical Analysis of Metallic Nanoparticle Synthesis Using RF Inductively Coupled Plasma Flows, Transactions of the ASME, Journal of Heat Transfer, 2005, 127, p. 1222-1230.CrossRefGoogle Scholar
  4. 4.
    K. Matsuura, T. Hasegawa, T. Ohmi, and M. Kudoh, Synthesis of MoSi2-TiSi2 Pseudobinary Alloys by Reactive Sintering, Metallurgical and Materials Transactions A, 2000, 31(3), p. 747-753.CrossRefGoogle Scholar
  5. 5.
    X. Fan and T. Ishigagi, Critical free energy for nucleation from the congruent melt of MoSi2, Journal of Crystal Growth, 1997, 171, p. 166-173.CrossRefADSGoogle Scholar
  6. 6.
    X. Fan, T. Ishigaki, and Y. Sato, Phase formation in molybdenum disilicide powders during in-flight induction plasma treatment, Journal of Materials Research, 1997, 12(5), p. 1315-1326.CrossRefADSGoogle Scholar
  7. 7.
    T. Watanabe, H. Itoh, and Y. Ishii, Preparation of ultrafine particles of silicon base intermetallic compound by arc plasma method, Thin Solid Films, 2001, 390, p. 44-50 .CrossRefADSGoogle Scholar
  8. 8.
    T. Watanabe and H. Okumiya, Formation mechanism of silicide nanoparticles by induction thermal plasmas, Science and Technology of Advanced Materials, 2004, 5, p. 639-646.CrossRefGoogle Scholar
  9. 9.
    M. Shigeta, and T. Watanabe 2007 Growth mechanism of silicon-based functional nanoparticles fabricated by inductively coupled thermal plasmas, Journal of Physics D: Applied Physics 40, 2407-2419.CrossRefADSGoogle Scholar
  10. 10.
    S.L. Girshick, C.-P. Chiu, R. Muno, C.Y. Wu, L. Yang, S.K. Singh, and P.H. McMurry, Thermal plasma synthesis of ultrafine iron particles, Journal of Aerosol Science, 1993, 24(3), p. 367-382.CrossRefGoogle Scholar
  11. 11.
    J.F. Bilodeau and P. Proulx, A mathematical model for ultrafine iron powder growth in thermal plasma, Aerosol Science and Technology, 1996, 24, 175-189.CrossRefGoogle Scholar
  12. 12.
    M. Desilets, J.F. Bilodeau, and P. Proulx, Modelling of the reactive synthesis of ultra-fine powders in a thermal plasma reactor, Journal of Physics D: Applied Physics, 1997, 30, 1951-1960.CrossRefADSGoogle Scholar
  13. 13.
    A.C.d. Cruz and R.J. Munz, Vapor Phase Synthesis of Fine Particles, IEEE Transaction, Plasma Science, 1997, 25(5), p. 1008-1016.CrossRefADSGoogle Scholar
  14. 14.
    A.B. Murphy, Formation of titanium nanoparticles from a titanium tetrachloride plasma, Journal of Physics D: Applied Physics, 2004, 37, 2841-2847.CrossRefADSGoogle Scholar
  15. 15.
    M. Shigeta and T. Watanabe, Two-Dimensional Analysis of Nanoparticle Formation in Induction Thermal Plasmas with Counterflow Cooling, Thin Solid Films, 2008, 516, p 4415-4422.Google Scholar
  16. 16.
    M. Shigeta and T. Watanabe, Numerical investigation of cooling effect on platinum nanoparticle formation in inductively coupled thermal plasmas, Journal of Applied Physics, 2008, 103, 074903.CrossRefADSGoogle Scholar
  17. 17.
    N.Y.M. Gonzalez, M.E. Morsli, and P. Proulx, Production of Nanoparticles in Thermal Plasmas: A Model Including Evaporation, Nucleation, Condensation, and Fractal Aggregation, Journal of Thermal Spray Technology, 2008, 17(4), p. 533-550.CrossRefADSGoogle Scholar
  18. 18.
    S.E. Pratsinis and K.-S. Kim, Particle coagulation, diffusion and thermophoresis in laminar tube flows, Journal of Aerosol Science, 1989, 20(1), p. 101-111.CrossRefGoogle Scholar
  19. 19.
    E.R. Whitby and P.H. McMurry, Modal Aerosol Dynamics Modeling, Aerosol Science and Technology, 1997, 27, 673-688.CrossRefGoogle Scholar
  20. 20.
    F. Gelbard, Y. Tambour, and J.H. Seifeld, Sectional Representations for Simulating Aerosol Dynamics, Journal of Colloid and Interface Science, 1980, 76(2), p. 541-556.CrossRefGoogle Scholar
  21. 21.
    A. Prakash, A.P. Bapat, and M.R. Zachariah, A simple numerical algorithm and software for solution of nucleation, surface growth, and coagulation problems, Aerosol Science and Technology, 2003, 37, p. 892-898.CrossRefGoogle Scholar
  22. 22.
    A. Vorobev, O. Zikanov, and P. Mohanty, Modelling of the in-flight synthesis of TaC nanoparticles from liquid precursor in thermal plasma jet, Journal of Physics D: Applied Physics, 2008, 41, 085302.CrossRefGoogle Scholar
  23. 23.
    A. Vorobev, O. Zikanov, and P. Mohanty, A Co-Condensation Model for In-Flight Synthesis of Metal-Carbide Nanoparticles in Thermal Plasma Jet, Journal of Thermal Spray Technology, 2008, 17(5-6), p. 956-965.CrossRefADSGoogle Scholar
  24. 24.
    S.K. Friedlander 2000 Smoke, Dust and Haze, Fundamentals of Aerosol Dynamics 2nd Ed. Oxford University Press.Google Scholar
  25. 25.
    T.B. Massalski, Binary Alloy Phase Diagrams. 2nd Ed., American Society for Metals, Materials Park, 1990.Google Scholar
  26. 26.
    S.L. Girshick, C.-P. Chiu, and P.H. McMurry, Time-Dependent Aerosol Models and Homogeneous Nucleation Rates, Aerosol Science and Technology, 1990, 13, 465-477.CrossRefGoogle Scholar
  27. 27.
    J.H. Seinfeld and S.N. Pandis, Atmospheric Chemistry and Physics, From Air Pollution to Climate Change, John Wiley & Sons, Inc., 1998.Google Scholar
  28. 28.
    G.M. Phanse and S.E. Pratsinis, Theory for Aerosol Generation in Laminar Flow Condensers, Aerosol Science and Technology, 1989, 11, 100-119.CrossRefGoogle Scholar
  29. 29.
    J.O. Hirschfelder, C.F. Curtiss, and R.B. Bird, Molecular Theory of Gases and Liquids, John Willy, 1964.Google Scholar
  30. 30.
    The Japan Institute of Metals, Metal Data Book, Maruzen, Tokyo, 1993 (in Japanese).Google Scholar
  31. 31.
    M. Shigeta, T. Watanabe, and H. Nishiyama, Numerical investigation for nano-particle synthesis in an RF inductively coupled plasma, Thin Solid Films, 2004, 457, 192-200.CrossRefADSGoogle Scholar

Copyright information

© ASM International 2009

Authors and Affiliations

  1. 1.Department of Mechanical Systems and Design, Graduate School of EngineeringTohoku UniversitySendaiJapan
  2. 2.Department of Environmental Chemistry and Engineering, Interdisciplinary Graduate School of Science and EngineeringTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations