Journal of Thermal Spray Technology

, Volume 18, Issue 2, pp 201–208 | Cite as

Effect of Thermal Aging on Microstructure and Functional Properties of Zirconia-Base Thermal Barrier Coatings

  • N. Markocsan
  • P. Nylén
  • J. Wigren
  • X.-H. Li
  • A. Tricoire
Peer Reviewed


Thermal barrier coating (TBCs) systems made of plasma sprayed zirconia are commonly used in gas turbine engines to lower metal components surface temperature and allow higher combustion temperature that results in higher fuel efficiency and environmentally cleaner emissions. Low thermal conductivity and long service life are the most important properties of these coatings. The objective of this work was to study the influence of a long-term heat treatment (i.e., 1200 °C/2000 h) on different characteristics of atmospheric plasma sprayed TBCs. Two zirconia feedstock materials were evaluated, namely, yttria partially stabilized zirconia and dysprosia partially stabilized zirconia. Several spray conditions were designed and employed to achieve different coating morphologies. Microstructure analyses revealed that the coating microstructure was significantly dependent on both operating conditions and heat treatment conditions. Significant changes in coatings porosity occurred during heat treatment. The lowest thermal conductivity was reached with the dysprosia partially stabilized zirconia material. Heat treatment affected TBCs adhesion strength as well.


heat treatment plasma spray porosity TBCs thermal conductivity zirconia 


  1. 1.
    J.R. Davis, Ed., Handbook of Thermal Spray Technology, ASM International, Materials Park, OH, 2004.Google Scholar
  2. 2.
    R.A. Miller, Thermal Barrier Coatings for Aircraft Engines: History and Directions, J. Therm. Spray Technol., 1997, 6(1), p 35-42.CrossRefADSGoogle Scholar
  3. 3.
    J.R. Nicholls, Advances in Coating Design for High Performance Gas Turbines, MRS Bull., 2003, 28(a), p 659-670.Google Scholar
  4. 4.
    W.A. Nelson and R.M. Orenstein, TBC Experience in Land/Based Gas Turbines, J. Therm. Spray Technol., 1997, 6(2), p 176-180.CrossRefADSGoogle Scholar
  5. 5.
    S.M. Meier and D.K. Gupta, The Evolution of Thermal Barrier Coatings in Gas Turbine Engine Applications, Trans. ASME, 1994, 116, p 250-256.CrossRefGoogle Scholar
  6. 6.
    C.G. Levi, Emerging Materials and Processes for Thermal Barrier Systems, Curr. Opin. Solid State Mater. Sci., 2004, 8, p 77-91.CrossRefGoogle Scholar
  7. 7.
    R. Vaßen, F. Cernuschi, G. Rizzi, N. Markocsan, L. Östergren, A. Kloosterman, R. Mevrel, J. Feist, and J. Nicholls, Overview in the Field of Thermal Barrier Coatings Including Burner Rig Testing in the European Union, Bull. Ceram. Soc. Jpn., 2008, 43, p 371-383.Google Scholar
  8. 8.
    U. Schulz, C. Leyens, K. Fritscher, M. Peters, B. Saruhan-Brings, and O. Lavigne, Some Recent Trends in Research and Technology of Advanced Thermal Barrier Coatings, Aerospace Sci. Technol., 2003, 7, p 73-80.CrossRefGoogle Scholar
  9. 9.
    J. Wigren and L. Pejryd, Thermal Barrier Coatings—Why, How, Where and Where to, Proceedings of the 15th International Thermal Spray Conference—Thermal Spray: Meeting the Challenges of the 21st Century, C. Coddet, Ed., May 25-29, 1998 (Nice, France), ASM International, 1998, p 1531-1542Google Scholar
  10. 10.
    N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas Turbine Engine Applications, Science, 2002, 296, p 280-284.PubMedCrossRefADSGoogle Scholar
  11. 11.
    S. Stecura, Optimization of the Ni-Cr-Al-Y/ZrO2-Y2O3 Thermal Barrier System, Adv. Ceram. Mater., 1986, 1(1), p 68-76.Google Scholar
  12. 12.
    R. Vaßen and D. Stöver, Influence of Microstructure on the Thermal Cycling Performance of Thermal Barrier Coatings, Proceedings of the Conference Thermal Spray 2007: Global Coating Solutions, B.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and G. Montavon, Eds., ASM International, Materials Park, OH, 2007Google Scholar
  13. 13.
    C. Giolli, A. Scrivani, G. Rizzi, F. Borgioli, G. Bolelli, and L. Lusvarghi, Failure Mechanism for Thermal Fatigue of Thermal Barrier Coating Systems, Proceedings of the International Thermal Spray Conference—Thermal Spray Crossing Borders, ITSC 2008, E. Lugscheider, Ed., DVS-Verlag GmbH, Dusseldorf, Germany, 2008Google Scholar
  14. 14.
    J.A. Haynes, E.D. Rigney, M.K. Ferber, and W.D. Porter (2000) Thermal Cycling Behaviour of Plasma-Sprayed Thermal Barrier Coatings with Various MCrAIY Bond Coats. J Therm Spray Technol 9(1):38-48.CrossRefADSGoogle Scholar
  15. 15.
    P. Scardi, M. Leoni, and L. Bertamini, Influence of Phase Stability on the Residual Stress in Partially Stabilized Zirconia TBC Produced by Plasma Spray, Surf. Coat. Technol., 1995, 76-77, p 106-112.CrossRefGoogle Scholar
  16. 16.
    K.M. Grant, S. Krämer, J. Löfvander, and C. Levi, CMAS Degradation of Environmental Barrier Coatings, Surf. Coat. Technol., 2007, 202(4-7), p 653-657.CrossRefGoogle Scholar
  17. 17.
    A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, and F.S. Pettit, Mechanisms Controlling the Durability of Thermal Barrier Coatings, Progr. Mater. Sci., 2001, 46, p 505-553.CrossRefGoogle Scholar
  18. 18.
    R.W. Trice, Y.J. Su, J.R. Mawdsley, K.T. Faber, A.R. De Arellano-López, H. Wang, and W.D. Porter, Effect of Heat Treatment on Phase Stability, Microstructure, and Thermal Conductivity of Plasma-Sprayed YSZ, J. Mater. Sci., 2002, 37, p 2359-2365.CrossRefGoogle Scholar
  19. 19.
    R.A. Miller, J.L. Smialek, and R.G. Garlick, Phase Stability in Plasma-Sprayed, Partially Stabilized Zirconia-Yttria, Science and Technology of Zirconia, Advances in Ceramics, Vol. 3., A.H. Heuer and L.W. Hobbs, Eds., The American Ceramic Society, 1981, p 241-253Google Scholar
  20. 20.
    J. Moon, H. Choi, H. Kim, and C. Lee, The Effects of the Heat Treatment on the Phase Transformation Behavior of Plasma-Sprayed Stabilized ZrO2 Coatings, Surf. Coat. Technol., 2002, 155, p 1-10.CrossRefGoogle Scholar
  21. 21.
    J. Ilavsky, and J.K. Stalick, Phase Composition and its Changes During Annealing of Plasma-Sprayed YSZ, Surf. Coat. Technol., 2000, 127, p 120-129.CrossRefGoogle Scholar
  22. 22.
    N. Markocsan, P. Nylen, J. Wigren, and X.-H. Li, Low Thermal Conductivity Coatings for Gas Turbine Applications, J. Therm. Spray Technol., 2007, 16(4), p 498-505.CrossRefADSGoogle Scholar
  23. 23.
    J. Wigren, High Insulation Thermal Barrier Systems—HITS, Brite Euram Project BE96-3226, 1996Google Scholar
  24. 24.
    O. Lavigne, Y. Renollet, M. Poulain, C. Rio, P. Moretto, P. Brannvall, and J. Wigren, Microstructural Characterization of Plasma Sprayed Thermal Barrier Coatings by Quantitative Image Analysis, Quantitative Microscopy of High Temperature Materials Conference, Sheffield, UK, 1999Google Scholar
  25. 25.
    W.J. Parker, R.J. Jenkins, C.P. Butler, and G.L. Abort, Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity, J. Appl. Phys., 1961, 32, p 1679-1684.CrossRefADSGoogle Scholar
  26. 26.
    R. Taylor, Construction of Apparatus for Heat Pulse Thermal Diffusivity Measurements from 300-3000 K, J. Phys. E: Sci. Instrum., 1980, 13, p 1193-1199.CrossRefADSGoogle Scholar
  27. 27.
    L. M. Clark and R.E. Taylor, Radiation Loss in the Flash Method for Thermal Diffusivity, J. Appl. Phys., 1975, 46(2), p 714-719.CrossRefADSGoogle Scholar
  28. 28.
    D. Cowan, Pulse Method of Measuring Thermal Diffusivity at High Temperatures, J. Appl. Phys., 1963, 34(4), p 926-927.CrossRefADSGoogle Scholar
  29. 29.
    R. Brandt, L. Pawlowski, and G. Neuer, Specific Heat and Thermal Conductivity of Plasma Sprayed Yttria-Stabilised Zirconia and NiAl, NiCr, NiCrAl, NiCrAlY, NiCoCrAlY Coatings, High Temp.—High Pressures, 1986, 18, p 65-77.Google Scholar
  30. 30.
    K.E. Wilkes and J.F. Lagedrost, Thermophysical Properties of Plasma Sprayed Coatings, Report NASA-CR-121144, National Aeronautics and Space Administration, 1973Google Scholar
  31. 31.
    J. Wigren, Improved Plasma Sprayed Thermal Barriers for Relevant Combustor Geometries Using Enhanced Process Control and Better Test Technologies-COMBCOAT, Brite Euram Project BRE-CT94-0936, 1994Google Scholar

Copyright information

© ASM International 2009

Authors and Affiliations

  • N. Markocsan
    • 1
  • P. Nylén
    • 1
    • 2
  • J. Wigren
    • 2
  • X.-H. Li
    • 3
  • A. Tricoire
    • 2
  1. 1.University WestTrollhättanSweden
  2. 2.Volvo Aero CorporationTrollhättanSweden
  3. 3.Siemens Industrial Turbomachinery ABFinspångSweden

Personalised recommendations