Journal of Thermal Spray Technology

, Volume 18, Issue 3, pp 364–379

Bonding Mechanisms in Cold Spraying: The Contributions of Metallurgical and Mechanical Components

  • T. Hussain
  • D. G. McCartney
  • P. H. Shipway
  • D. Zhang
Peer Reviewed

Abstract

The mechanism of bonding in cold spraying is still a matter of some debate. In this work, copper has been cold sprayed onto aluminium alloy substrates, the surfaces of which had been prepared in a variety of ways. The coating-substrate bonding was assessed via a novel intermetallic growth method along with adhesive pull-off testing, and related to the substrate preparation method. The bond strength has been rationalized in terms of a modified composite strength model, with two operative bonding mechanisms, namely (i) metallurgical bonding and (ii) mechanical interlocking of substrate material into the coating. In most cases, mechanical interlocking is able to account for a large proportion of the total bond strength, with metallurgical bonding only contributing significantly when the substrate had been polished and annealed prior to spraying. In addition, grit-blasting has been shown to significantly reduce the bond strength compared to other substrate preparation methods.

Keywords

adhesion bond strength grit-blasting 

References

  1. 1.
    R.C. Dykhuizen, M.F. Smith (1998) Gas dynamic principles of cold spray, J. Therm. Spray Technol., 7(2): 205–212.CrossRefADSGoogle Scholar
  2. 2.
    H. Assadi, F. Gartner, T. Stoltenhoff, and H. Kreye (2003) Bonding mechanism in cold gas spraying, Acta Mater., 51(15): 4379–4394.CrossRefGoogle Scholar
  3. 3.
    T. Schmidt, F. Gartner, H. Assadi, and H. Kreye (2006) Development of a generalized parameter window for cold spray deposition, Acta Mater., 54(3): 729–742.CrossRefGoogle Scholar
  4. 4.
    M. Grujicic, J.R. Saylor, D.E. Beasley, W.S. DeRosset, and D. Helfritch (2003) Computational analysis of the interfacial bonding between feed-powder particles and the substrate in the cold-gas dynamic-spray process, Appl. Surf. Sci., 219(3–4): 211–227.CrossRefADSGoogle Scholar
  5. 5.
    T. Stoltenhoff, H. Kreye, and H.J. Richter (2002) An analysis of the cold spray process and its coatings, J. Therm. Spray Technol., 11(4): 542–550.CrossRefADSGoogle Scholar
  6. 6.
    A.O. Tokarev (1996) Structure of aluminum powder coatings prepared by cold gasdynamic spraying, Metal Science and Heat Treatment, 38(3–4): 136–139.CrossRefGoogle Scholar
  7. 7.
    T.H. Van Steenkiste, J.R. Smith, and R.E. Teets (2002) Aluminum coatings via kinetic spray with relatively large powder particles, Surf. Coat. Technol., 154(2–3): 237–252.CrossRefGoogle Scholar
  8. 8.
    M. Grujicic, C.L. Zhao, W.S. DeRosset, and D. Helfritch (2004) Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process, Mater. Design, 25(8): 681–688.CrossRefGoogle Scholar
  9. 9.
    W.Y. Li, H.L. Liao, C.J. Li, H.S. Bang, and C. Coddet (2007) Numerical simulation of deformation behavior of Al particles impacting on Al substrate and effect of surface oxide films on interfacial bonding in cold spraying, Appl. Surf. Sci., 253(11): 5084–5091.CrossRefADSGoogle Scholar
  10. 10.
    R.C. Dykhuizen, M.F. Smith, D.L. Gilmore, R.A. Neiser, X. Jiang, and S. Sampath (1999) Impact of high velocity cold spray particles, J. Therm. Spray Technol., 8(4): 559–564.CrossRefADSGoogle Scholar
  11. 11.
    T.S. Price, P.H. Shipway, D.G. McCartney, E. Calla, and D. Zhang (2007) A method for characterizing the degree of inter-particle bond formation in cold sprayed coatings, J. Therm. Spray Technol., 16(4): 566–570.CrossRefADSGoogle Scholar
  12. 12.
    V.K. Champagne, D. Helfritch, P. Leyman, S.G. Ahl, and B. Klotz (2005) Interface material mixing formed by the deposition of copper on aluminum by means of the cold spray process, J. Therm. Spray Technol., 14(3): 330–334.CrossRefADSGoogle Scholar
  13. 13.
    K. Balani, A. Agarwal, S. Seal, and J. Karthikeyan (2005) Transmission electron microscopy of cold sprayed 1100 aluminum coating, Scr. Mater., 53(7): 845–850.CrossRefGoogle Scholar
  14. 14.
    C. Borchers, F. Gartner, T. Stoltenhoff, and H. Kreye (2004) Microstructural bonding features of cold sprayed face centered cubic metals, J. Appl. Phys., 96(8): 4288–4292.CrossRefADSGoogle Scholar
  15. 15.
    R.C. McCune, W.T. Donlon, O.O. Popoola, and E.L. Cartwright (2000) Characterization of copper layers produced by cold gas-dynamic spraying, J. Therm. Spray Technol., 9(1): 73–82.CrossRefADSGoogle Scholar
  16. 16.
    T. Marrocco, D.G. McCartney, P.H. Shipway, and A.J. Sturgeon (2006) Production of titanium deposits by cold-gas dynamic spray: Numerical modeling and experimental characterization, J. Therm. Spray Technol., 15(2): 263–272.CrossRefADSGoogle Scholar
  17. 17.
    J.W. Wu, J.G. Yang, H.Y. Fang, S. Yoon, and C. Lee (2006) The bond strength of Al-Si coating on mild steel by kinetic spraying deposition, Appl. Surf. Sci., 252(22): 7809–7814.CrossRefADSGoogle Scholar
  18. 18.
    H. Mäkinen, J. Lagerbom, and P. Vuoristo, Adhesion of Cold Sprayed Coatings: Effect of Powder, Substrate, and Heat Treatment, Thermal Spray: Global Coating Solutions, B.R. Marple, M.M. Hyland, Y. Lau, C. Li, R.S. Lima, and G. Montavon, Eds., May 14-16, 2007 (Beijing, People’s Republic of China), ASM International, 2007, p 31-36Google Scholar
  19. 19.
    K. Sakaki, T. Tajima, H. Li, S. Shinkai, and Y. Shimizu, Influence of Substrate Conditions and Traverse Speed on Cold Sprayed Coatings, Thermal Spray: Advances in Technology and Application, May 10-12, 2004 (Osaka, Japan), ASM International, 2004, p 358-362Google Scholar
  20. 20.
    P. Richer, B. Jodoin, K. Taylor, E. Sansoucy, M. Johnson, and L. Ajdelsztajn, Effect of Particle Geometry and Substrate Preparation in Cold Spray, Thermal Spray: Exploring Its Surfacing Potential, E. Lugscheider, Ed., May 2-4, 2005 (Basel, Switzerland), ASM International, 2005Google Scholar
  21. 21.
    T. Stoltenhoff, C. Borchers, F. Gartner, and H. Kreye (2006) Microstructures and key properties of cold-sprayed and thermally sprayed copper coatings, Surf. Coat. Technol., 200(16–17): 4947–4960.CrossRefGoogle Scholar
  22. 22.
    F.A. Calvo, A. Urena, J.M.G. Desalazar, and F. Molleda (1988) Special Features of the Formation of the Diffusion Bonded Joints between Copper and Aluminum, J. Mater. Sci., 23(6): 2273–2280.CrossRefADSGoogle Scholar
  23. 23.
    I. Manna, and J.D. Majumdar (1993) Enhanced Kinetics of Diffusion Coating of Aluminum on Copper by Boundary Diffusion, J. Mater. Sci. Lett., 12(12): 920–922.CrossRefGoogle Scholar
  24. 24.
    Y. Funamizu, and K. Watanabe (1971) Interdiffusion in Al-Cu System, Trans. Jpn. Inst. Metals, 12(3): 147–152.Google Scholar
  25. 25.
    D. Zhang, P.H. Shipway, and D.G. McCartney (2005) Cold gas dynamic spraying of aluminum: The role of substrate characteristics in deposit formation, J. Therm. Spray Technol., 14(1): 109–116.CrossRefADSGoogle Scholar
  26. 26.
    E. Calla, “Cold Gas Spraying of Copper and Tin onto Metallic and Non Metallic Substrates,” Ph.D. Thesis, University of Nottingham, 2005Google Scholar
  27. 27.
    R.C. Dykhuizen and R.A. Neiser, Optimizing the Cold Spray Process, Thermal Spray: Advancing the Science and Applying the Technology, B.R. Marple and C. Moreau, Eds., May 5-8, 2003 (Orlando, FL), ASM International, 2003, p 19-26Google Scholar
  28. 28.
    C. Borchers, F. Gartner, T. Stoltenhoff, H. Assadi, and H. Kreye (2003) Microstructural and macroscopic properties of cold sprayed copper coatings, J. Appl. Phys., 93(12): 10064–10070.CrossRefADSGoogle Scholar

Copyright information

© ASM International 2009

Authors and Affiliations

  • T. Hussain
    • 1
  • D. G. McCartney
    • 1
  • P. H. Shipway
    • 1
  • D. Zhang
    • 1
  1. 1.University of NottinghamNottinghamUK

Personalised recommendations