Journal of Thermal Spray Technology

, Volume 17, Issue 5–6, pp 831–837

New Generation Perovskite Thermal Barrier Coating Materials

  • W. Ma
  • M.O. Jarligo
  • D.E. Mack
  • D. Pitzer
  • J. Malzbender
  • R. Vaßen
  • D. Stöver
Peer Reviewed


Advanced ceramic materials of perovskite structure have been developed for potential application in thermal barrier coating systems, in an effort to improve the properties of the pre-existing ones like yttria-stabilized zirconia. Yb2O3 and Gd2O3 doped strontium zirconate (SrZrO3) and barium magnesium tantalate (Ba(Mg1/3Ta2/3)O3) of the ABO3 and complex A(B′1/3B′′2/3)O3 systems, respectively, have been synthesized using ball milling prior to solid state sintering. Thermal and mechanical investigations show desirable properties for high-temperature coating applications. On atmospheric plasma spraying, the newly developed thermal barrier coatings reveal promising thermal cycle lifetime up to 1350 °C.


gas turbine coatings perovskite ceramics plasma-sprayed TBCs thermal cycling lifetime 


  1. 1.
    R.A. Miller 1997 Thermal Barrier Coatings for Aircraft Engines: History and Directions. J. Therm. Spray Technol. 6(13), 35–42CrossRefADSGoogle Scholar
  2. 2.
    W.A. Nelson, R.M. Orenstein 1997 TBC Experience in Land/Based Gas Turbines. J. Therm. Spray Technol. 6(2), 176–80CrossRefADSGoogle Scholar
  3. 3.
    R.A. Miller, J.L. Smialek, R.G. Garlick 1981 Phase Stability in Plasma-Sprayed Partially Stabilized Zirconia-Yttria. In: A.H. Heuer, L.W. Hobbs (eds) Advances in Ceramics, Vol. 3, Science and Technology of Zirconia. American Ceramic Society, Columbus, OH, pp 241–51Google Scholar
  4. 4.
    R. Vassen, S. Schwartz-Luckge, W. Jungen, and D. Stoever, Heat-Insulating Layer Made of Complex Perovskite, US Patent 20050260435 A1, 2005Google Scholar
  5. 5.
    B. Heimberg, W. Beele, K. Kempter, U. Bast, T. Haubold, M. Hoffmann, A. Endriss, P. Greil, C. Hong, F. Aldinger, and H. Seifert, Process for Production a Ceramic Thermal Barrier Layer for Gas Turbine Engine Component, US Patent 6602553 B2, 2003Google Scholar
  6. 6.
    T. Noguchi, T. Okubo, O. Yonemochi 1969 Reactions in the System ZrO2-SrO. J. Amer. Ceram. Soc. 52(4), 178–181CrossRefGoogle Scholar
  7. 7.
    R. Guo, A.S. Bhalla, L.E. Cross 1994 Ba(Mg1/3Ta2/3)O3 Single Crystal Fiber Grown by the Laser Heated Pedestal Growth Technique. J. Appl. Phys. 75(9), 4704–4708CrossRefADSGoogle Scholar
  8. 8.
    A.S. Bhalla, R. Guo 1997 Design of Dielectric Substrates for High TC Superconductor Films. Acta Physica Polonica A92, 7–21Google Scholar
  9. 9.
    C.J. Howard, K.S. Knight, B.J. Kennedy, E.H. Kisi 2000 The Structural Phase Transitions in Strontium Zirconate Revisited. J. Phys.: Condens. Matter. 12, L677–L683CrossRefADSGoogle Scholar
  10. 10.
    L. Carlsson 1967 High-Temperature Phase Transitions in SrZrO3. Acta Cryst. 23, 901–905CrossRefGoogle Scholar
  11. 11.
    D. Ligny, P. Richet 1996 High-temperature Heat Capacity and Thermal Expansion of SrTiO3 and SrZrO3 Perovskites. Phys. Rev. B 53(6), 3013–3022 CrossRefADSGoogle Scholar
  12. 12.
    Y. Zhao, D.J. Weidner 1991 Thermal Expansion of SrZrO3 and BaZrO3 Perovskites. Phys. Chem. Minerals 18, 294–301CrossRefADSGoogle Scholar
  13. 13.
    Y. Fang, A. Hu, S. Ouyang, J. Jei Oh 2001 The Effect of Calcination on the Microwave Dielectric Properties of Ba(Mg1/3Ta2/3)O3. J. Euro. Ceram. Soc. 21, 2745–2750CrossRefGoogle Scholar
  14. 14.
    F. Traeger, R. Vassen, K-H. Rauwald, D. Stöver 2003 Thermal Cycling Setup for Testing Thermal Barrier Coatings. Adv. Eng. Mater. 5(6), 429–33CrossRefGoogle Scholar
  15. 15.
    R. Morrell 1989 Handbook of Properties of Technical and Engineering Ceramics, Part 1. Her Majesty’s Stationery Office, London, U.KGoogle Scholar
  16. 16.
    R. Vassen, F. Tietz, G. Kerkhoff, R. Wilkenhoener, and D. Stoever, New Materials for Advanced Thermal Barrier Coatings, Proceedings of the 6th Liège Conference, Part III, Materials for Advanced Power Engineering, J. Lecomte-Beckers, F. Schubert, and P.J. Ennis, Eds., Forschungszentrum Jülich GmbH, Jülich, Germany, 1998, p 162-165Google Scholar
  17. 17.
    C. Mercer, J.R. Williams, D.R. Clarke, A.G. Evans 2007 On a Ferroelastic Mechanism Governing the Toughness of Metastable Tetragonal Prime (t’) Yttria-Stabilized Zirconia. Proc. Roy. Soc. 463, 1393–1408CrossRefADSGoogle Scholar
  18. 18.
    S. Stecura 1986 Optimization of the Ni-Cr-Al-Y/ZrO2-Y2O3 Thermal Barrier System. Adv. Ceram. Mater. 1(1), 68–76Google Scholar
  19. 19.
    U. Bast, E. Schumann 2002 Development of Novel Oxide Materials for TBCs. Ceramic Eng. Sci. Proc. 23, 525–532CrossRefGoogle Scholar
  20. 20.
    F. Traeger, M. Ahrens, R. Vassen, D. Stoever 2003 A Life Time Model for Ceramic Thermal Barrier Coatings. Mater. Sci. Eng. A 358, 255–265CrossRefGoogle Scholar
  21. 21.
    N. Jacobson, Thermodynamic Properties of Some Metal Oxide-Zirconia Systems, NASA TM 102351, 1989Google Scholar
  22. 22.
    U. Schulz, B. Saruhan, K. Fritscher, C. Leyens 2004 Review on Advanced EB-PVD Ceramic Topcoats for TBC Applications. Int. J. Appl. Ceram. Technol. 1(4), 302–315Google Scholar
  23. 23.
    D. Schwingel, R. Taylor, T. Haubold, J. Wigren, C. Gualco 1998 Mechanical and Thermophysical Properties of Thick PYSZ Thermal Barrier Coatings: Correlation with Microstructure and Spraying Parameters. Surf. Coat. Technol. 108–109(1–3), 99–106 CrossRefGoogle Scholar

Copyright information

© ASM International 2008

Authors and Affiliations

  • W. Ma
    • 1
  • M.O. Jarligo
    • 2
  • D.E. Mack
    • 2
  • D. Pitzer
    • 2
  • J. Malzbender
    • 2
  • R. Vaßen
    • 2
  • D. Stöver
    • 2
  1. 1.School of Materials Science and EngineeringInner Mongolia University of TechnologyHohhotP.R. China
  2. 2.Institute of Energy ResearchForschungszentrum Jülich GmbHJuelichGermany

Personalised recommendations