Advertisement

Journal of Thermal Spray Technology

, Volume 17, Issue 5–6, pp 924–932 | Cite as

Influence of the HVOF Gas Composition on the Thermal Spraying of WC-Co Submicron Powders (−8 + 1 μm) to Produce Superfine Structured Cermet Coatings

  • W. Tillmann
  • E. Vogli
  • I. Baumann
  • G. Matthaeus
  • T. Ostrowski
Peer Reviewed

Abstract

Thermal spraying technology represents a novel and promising approach to protect forming tools with complex surfaces and highest shape accuracy against abrasive wear and galling. However, due to high or nonuniform layer thicknesses or inappropriate surface roughness conventional coarse-structured coatings are not suitable to achieve this aim. The application of novel submicron or nanoscaled feedstock materials in the thermal spray process can provide the deposition of cermet coatings with significantly improved characteristics and is recently of great interest in science and industry. In this collaborative study, the feeding and HVOF spraying of WC-Co submicron powders (−8 + 1 μm) have been investigated to manufacture superfine structured, wear resistant, near-net-shape coatings with improved macroscopic properties and smooth surfaces. The influences of varying HVOF gas compositions on the spray process and the coating properties have been analyzed.

Keywords

deep-drawing tools hard material coatings HVOF near-net-shape coatings submicron powders superfine structured and nanostructured coatings surface engineering thermal spraying fine powder feeding 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support of the DFG (German Science Foundation) within the Collaborative Research Centre SFB 708.

References

  1. 1.
    T.N. Rhys-Jones, Thermally Sprayed Coating Systems for Surface Protection, Clearance Control Applications in Aero Engines, Surf. Coat. Technol., 1990, 43-44, p 402-415CrossRefGoogle Scholar
  2. 2.
    R.V. Hillery, Coatings for Performance Retention (in Military Aircraft Engines), J. Vacuum Sci. Technol., 1986, 4A (6), p 2624-2628ADSGoogle Scholar
  3. 3.
    J.K.N. Murthy, B. Venkataraman, Abrasive Wear Behaviour of WC-CoCr, Cr(ind 3)C(ind 2)-20(NiCr) Deposited by HVOF and Detonation Spray Processes, Surf. Coat. Technol., 2006, 8(200), p 2642-2652CrossRefGoogle Scholar
  4. 4.
    R. Nieminen, P. Vuoristo, K. Niemi, T. Mäntylä, and G. Barbezat, Rolling Contact Fatigue Characteristics of Thermally Sprayed WC + Co Coatings, TS96 Thermal Spraying Conference, Mar 6-8 1996 (Germany), DVS, 1996, p 354-359Google Scholar
  5. 5.
    P. Chivavibul, M. Watanabe, S. Kuroda, K. Shinoda, Effects of Carbide Size, Co Content on the Microstructure and Mechanical Properties of HVOF-Sprayed WC-Co Coatings, Surf. Coat. Technol., 2007, 3 (202), p 509-521CrossRefGoogle Scholar
  6. 6.
    K. Bobzin, F. Ernst, J. Zwick, G. Matthäus, Analysis of In-Flight Particle Properties of Thermal Sprayed Ultrafine Powders, Mat. Sci. Eng. Technol., 2007, 2 (38), p 149-154, in GermanGoogle Scholar
  7. 7.
    S. Zimmermann, H. Keller, and G. Schwier, Improved Coating Properties by Optimized Carbide Powders for Modern HVOF Systems, 6th HVOF Spraying Colloquium, Nov 27-28 2003 (Germany), 2003, p 31-38Google Scholar
  8. 8.
    K. Jia, T.E. Fisher, Abrasion Resistance of Nanostructured, Conventional Cemented Carbides, Wear, 1996, 1-2(200), p 206-214Google Scholar
  9. 9.
    K. Jia, T.E. Fisher, Sliding Wear of Conventional, Nanostructured Cemented Carbides, 11th International Conference on Wear of Mat, Wear, 1997, 203-204, p 310-318CrossRefGoogle Scholar
  10. 10.
    J. Landa, I. Illarramendi, J.M. Montalban, A. Igartua, and G. Mendoza, Application of Nano-HVOF to Piston Rings, 11th Nordic Symposium on Tribology, Jun 1-5 2004 (Norway), p 115-127Google Scholar
  11. 11.
    M. Ignatiev, E. Kovalev, Nanoparticles Processing for Fabrication of Multi-functional Nanostructured Coatings, Plastic Metal Forming, 2006, 4 (17), p 37-41Google Scholar
  12. 12.
    G. Matthaeus, M. Kostecki, and O. Dau, The Fully Automatic, Computer Controlled C-CJS (Computerised Carbide Jet System) HVOF System with 25 bar Combustion-Chamber pressure by Thermico, 5th Colloquium on HVOF Flame Spraying, Nov 16-17 2000 (Germany), GTS e.V., 2000, p 147-158Google Scholar
  13. 13.
    G. Matthaeus and A. Sturgeon, Application of the HVOF Process to Internal Coatings of Cylinders, and Hard-and Software for the Internal Coating of Complex Components, 7th HVOF Spraying Colloquium, Nov 9-10 2006 (Germany), GTS e.V., 2006, p 199-205Google Scholar
  14. 14.
    G. Matthaeus and G. Stevens, New HVOF Equipment and Technology for the Use of Superfine Powders—10 μm and Internal Coating Applications, 6th HVOF Spraying Colloquium, Nov 27-28 2003 (Germany), GTS e.V., 2003, p 167-176Google Scholar
  15. 15.
    M.H. Li, D. Shi, P.D. Christofides, Modeling, Control of HVOF Thermal Spray Processing of WC-Co Coatings, Powder Technol., 2005, 2-3(156), p 177-194CrossRefGoogle Scholar
  16. 16.
    M.H. Li , P.D. Christofides, Multi-scale Modeling, Analysis of an Industrial HVOF Thermal Spray Process, Chem. Eng. Sci., 2005, 13(60), p 3649-3669CrossRefGoogle Scholar
  17. 17.
    H. Kreye, F. Gärtner, and H.J. Richter, High Velocity Oxy-fuel Flame Spraying-state of the Art, New Developments and Alternatives, 6th HVOF Spraying Colloquium, Nov 27-28, 2003 (Germany), GTS e.V., 2003, p 5-17Google Scholar
  18. 18.
    E. Turunen, “Diagnostic tools for HVOF process optimization,” Ph.D. Thesis, Helsinki University of Technology, 2005Google Scholar
  19. 19.
    P.H. Shipway, D.G. McCartney, T. Sudaprasert, Sliding Wear Behavior of Conventional, Nanostructured HVOF Sprayed WC-Co Coatings. Wear, 2005, 7-12 (259), p 820-827CrossRefGoogle Scholar
  20. 20.
    A. Wank, A. Schwenk, B. Wielage, T. Grund, E. Friesen, and H. Pokhmurska, Untersuchungen zur Beständigkeit thermisch gespritzter Schichten bei durch Abrasion dominierter tribologischer Beanspruchung (Investigation on the Resistance of Thermally Sprayed Coatings Under Abrasion Dominated Tribologic Stress), Sep 07-08, 2006 (Germany), Werkstoffe und werkstofftechnische Anwendungen 24 (2006), p 301-306 (in German)Google Scholar
  21. 21.
    M.L. Lau, H.G. Jiang, W. Nuchter, and E.J. Lavernia, Thermal Spraying of Nanocrystalline Ni Coatings, Phys. Stat. Sol., 1998, 166, p 257-268Google Scholar
  22. 22.
    M. Magnani, P.H. Suegama, N. Espallargas, S. Dosta, C.S. Fugivara, J.M. Guilemany, A.V. Benedetti, Influence of HVOF Parameters on the Corrosion, Wear Resistance of WC-Co Coatings Sprayed on AA7050 T7, Surf. Coat. Technol., 2008, 202, p 4746-4757CrossRefGoogle Scholar
  23. 23.
    L. Fedrizzi, L. Valentinelli, S. Rossi, S. Segna, Tribocorrosion Behaviour of HVOF Cermet Coatings, Corros. Sci., 2007, 49, p 2781-2799CrossRefGoogle Scholar
  24. 24.
    V.V. Sobolev, J.M. Guilemany, Dynamic Processes During High Velocity Oxyfuel Spraying, Int. Mater. Rev., 1996, 1(41), p 13-32Google Scholar
  25. 25.
    O.P. Solonenko, Advanced Thermophysical Fundamentals of Melt-Droplet-Substrate Interaction and its Application in Thermal Spraying, Novosibirrsk, Russia, 2003Google Scholar
  26. 26.
    H. Du, W. Hua, J. Liu, Influence of Process Variables on the Qualities of Detonation Gun Sprayed WC-Co Coatings. Mater. Sci. Eng. 2005, 1-2(408A), p 202-210Google Scholar
  27. 27.
    R.C. Eucker, Technologies for Films and Coatings, Developments and Applications, Noyes Publications, 1982Google Scholar
  28. 28.
    Z.G. Ban, L.L. Shaw, Characterisation of Thermal Sprayed Nanostructured WC-Co Coatings Derived from Nanocrystalline WC-18wt.%Co Powders, J. Therm. Spray Technol., 2003, 1(12), p 112-119CrossRefADSGoogle Scholar

Copyright information

© ASM International 2008

Authors and Affiliations

  • W. Tillmann
    • 1
  • E. Vogli
    • 1
  • I. Baumann
    • 1
  • G. Matthaeus
    • 2
  • T. Ostrowski
    • 2
  1. 1.Institute of Materials EngineeringTechnische Universität DortmundDortmundGermany
  2. 2.Thermico GmbH and Co. KGDortmundGermany

Personalised recommendations