Advertisement

Journal of Thermal Spray Technology

, Volume 17, Issue 5–6, pp 623–630 | Cite as

In Situ Visualization of Impacting Phenomena of Plasma-Sprayed Zirconia: From Single Splat to Coating Formation

  • Kentaro Shinoda
  • Hideyuki Murakami
  • Seiji Kuroda
  • Kohsei Takehara
  • Sachio Oki
Peer Reviewed

Abstract

The authors have developed an in situ monitoring system for particle impacts under atmospheric dc plasma spraying conditions. This system utilized a high-speed video camera coupled with a long-distance microscope, and was capable of capturing the particle-impinging phenomena at one million frames per second. To understand the coating formation mechanism, two approaches were attempted, i.e., observation of the single splat formation and the subsequent coating formation. In the former case, the deformation and cooling processes of yttria-stabilized zirconia (YSZ) droplets impinging on substrates were successfully captured. In the latter case, multiple-droplet-impacting phenomena were observed as an ensemble treatment. Representing the coating process, the tower formation (0-dimensional) and bead formation (1-dimensional) were observed under typical plasma spray conditions for thermal barrier coatings using a triggering system coupled with the motion of a robot. The obtained images clearly showed the coating formation resulting from the integration of single splats.

Keywords

coatings for gas turbine components diagnostics and control influence of spray parameters TBC topcoats 

Notes

Acknowledgments

We thank Prof. Takehar-Goji Etoh (Kinki University) for his useful discussions. We also thank Mr. Masayuki Komatsu and Mr. Nobukazu Kakeya (NIMS) for help with the experiments.

References

  1. 1.
    T. Yoshida, Toward a New Era of Plasma Spray Processing, Pure Appl. Chem., 2006, 78 (6), p 1093-1107CrossRefGoogle Scholar
  2. 2.
    F. Gitzhofer, M. Boulos, J. Heberlein, R. Henne, T. Ishigaki, T. Yoshida, Integrated Fabrication Processes for Solid-Oxide Fuel Cells Using Thermal Plasma Spray Technology, MRS Bull., 2000, 25 (7), p 38-42Google Scholar
  3. 3.
    E. Moreau, C. Chazelas, G. Mariaux, A. Vardelle, Modeling the Restrike Mode Operation of a DC Plasma Spray Torch, J. Therm. Spray Technol. 2006, 15 (4), p 524-530CrossRefADSGoogle Scholar
  4. 4.
    J.F. Bisson, B. Gauthier, C. Moreau, Effect of Plasma Fluctuations on In-Flight Particle Parameters, J. Therm. Spray Technol. 2003, 12 (1), p 38-43CrossRefADSGoogle Scholar
  5. 5.
    J.F. Bisson, C. Moreau, Effect of Direct-Current Plasma Fluctuations on In-Flight Particle Parameters: Part II, J. Therm. Spray Technol., 2003, 12 (2), p 258-264CrossRefADSGoogle Scholar
  6. 6.
    P. Saravanan, V. Selvarajan, M.P. Srivastava, D.S. Rao, S.V. Joshi, G. Sundararajan, Study of Plasma- and Detonation Gun-Sprayed Alumina Coatings Using Taguchi Experimental Design, J. Therm. Spray Technol. 2000, 9 (4), p 505-512ADSGoogle Scholar
  7. 7.
    P. Fauchais, Understanding Plasma Spraying, J. Phys. D: Appl. Phys. 2004, 37, p R86-R108CrossRefADSGoogle Scholar
  8. 8.
    A. Vardelle, C. Moreau, P. Fauchais, The Dynamics of Deposit Formation in Thermal-Spray Processes, MRS Bull. 2000, 25 (7), p 32-37Google Scholar
  9. 9.
    T.G. Etoh, D. Poggemann, G. Kreider, H. Mutoh, A.J.P. Theuwissen, A. Ruckelshausen, Y. Kondo, H. Maruno, K. Takubo, H. Soya, K. Takehara, T. Okinaka, Y. Takano, An Image Sensor which Captures 100 Consecutive Frames at 1 000 000 Frames/s, IEEE Trans. Electron Dev., 2003, 50 (1), p 144-151CrossRefADSGoogle Scholar
  10. 10.
    S.T. Thoroddsen, T.G. Etoh, K. Takehara, High-Speed Imaging of Drops and Bubbles, Annu. Rev. Fluid Mech. 2008, 40, p 257-285CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    K. Shinoda, H. Murakami, S. Kuroda, S. Oki, K. Takehara, and T.G. Etoh, High-Speed Thermal Imaging of Yttria-Stabilized Zirconia Droplet Impinging on Substrate in Plasma Spraying, Appl. Phys. Lett., 2007, 90(19), Art. No. 194103 (3 pp)Google Scholar
  12. 12.
    K. Shinoda, H. Murakami, S. Kuroda, S. Oki, K. Takehara, and T.G. Etoh, High-Speed Thermal Imaging of Yttria-Stabilized Zirconia Droplets Impinging on a Substrate in Plasma Spraying, Proceedings of the 18th International Symposium on Plasma Chemistry, K. Tachibana, Ed., August 26-31 2007 (Kyoto), International Plasma Chemistry Society, 2007, Art. No. 28C-a3 (4 pp)Google Scholar
  13. 13.
    K. Shinoda, Y. Kojima, T. Yoshida, In Situ Measurement System for Deformation and Solidification Phenomena of Yttria-Stabilized Zirconia Droplets Impinging on Quartz Glass Substrate under Plasma Spraying Conditions, J. Therm. Spray Technol. 2005, 14 (4), p 511-517CrossRefADSGoogle Scholar
  14. 14.
    K. Shinoda, T. Koseki, and T. Yoshida, Influence of Impact Parameters of Zirconia Droplets on Splat Formation and Morphology in Plasma Spraying, J. Appl. Phys., 2006, 100(7), Art. No. 074903 (6 pp)Google Scholar
  15. 15.
    H.B. Guo, H. Murakami, S. Kuroda, Effect of Hollow Spherical Powder Size Distribution on Porosity and Segmentation Cracks in Thermal Barrier Coatings, J. Am. Ceram. Soc., 2006, 89 (12), p 3797-3804CrossRefGoogle Scholar
  16. 16.
    H.B. Guo, S. Kuroda, H. Murakami, Microstructures and Properties of Plasma-Sprayed Segmented Thermal Barrier Coatings, J. Am. Ceram. Soc., 2006, 89 (4), p 1432-1439CrossRefGoogle Scholar
  17. 17.
    A. McDonald, C. Moreau, S. Chandra, Thermal Contact Resistance Between Plasma-Sprayed Particles and Flat Surfaces, Int. J. Heat Mass Transfer, 2007, 50 (9-10), p 1737-1749MATHCrossRefGoogle Scholar
  18. 18.
    R. Rioboo, C. Tropea, M. Marengo, Outcomes from a Drop Impact on Solid Surfaces, At. Sprays, 2001, 11, p 155-165Google Scholar
  19. 19.
    A.L. Yarin, Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing, Annu. Rev. Fluid Mech. 2006, 38, p 159-192CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    L. Xu, L. Barcos, and S.R. Nagel, Splashing of Liquids: Interplay of Surface Roughness with Surrounding Gas, Phys. Rev. E, 2007, 76(6), Art. No. 066311 (5 pp)Google Scholar
  21. 21.
    L. Xu, Liquid Drop Splashing on Smooth, Rough, and Textured Surfaces, Phys. Rev. E, 2007, 75, Art. No. 056316 (8 pp)Google Scholar
  22. 22.
    B.M. Cetegen, W. Yu, In-Situ Particle Temperature, Velocity, and Size Measurements in DC Arc Plasma Thermal Sprays, J. Therm. Spray Technol. 1999, 8(1), p 57-67CrossRefADSGoogle Scholar
  23. 23.
    C. Moreau, M. Lamontagne, P. Cielo, Influence of the Coating Thickness on the Cooling Rates of Plasma-Sprayed Particles on a Substrate, Surf. Coat. Technol., 1992, 53, p 107-114CrossRefGoogle Scholar
  24. 24.
    M. Vardelle, A. Vardelle, A.C. Leger, P. Fauchais, D. Gobin, Influence of Particle Parameters at Impact on Splat Formation and Solidification in Plasma Spraying Processes, J. Therm. Spray Technol., 1995, 4 (1), p 50-58CrossRefADSGoogle Scholar
  25. 25.
    L. Li, A. Vaidya, S. Sampath, H.B. Xiong, L.L. Zheng, Particle Characterization and Splat Formation of Plasma Sprayed Zirconia, J. Therm. Spray Technol. 2006, 15 (1), p 97-105CrossRefADSGoogle Scholar
  26. 26.
    G. Mauer, R. Vassen, D. Stover, Detection of Melting Temperatures and Sources of Errors Using Two-Color Pyrometry During In-Flight Measurements of Atmospheric Plasma-Sprayed Particles, Int. J. Thermophys. 2008, 29 (2), p 764-786CrossRefGoogle Scholar
  27. 27.
    R. Ghafouri-Azar, J. Mostaghimi, S. Chandra, M. Charmchi, A Stochastic Model to Simulate the Formation of a Thermal Spray Coating, J. Therm. Spray Technol. 2003, 12 (1), p 53-69CrossRefADSGoogle Scholar

Copyright information

© ASM International 2008

Authors and Affiliations

  • Kentaro Shinoda
    • 1
  • Hideyuki Murakami
    • 1
  • Seiji Kuroda
    • 1
  • Kohsei Takehara
    • 2
  • Sachio Oki
    • 2
  1. 1.Coating Materials Group, Composites and Coatings CenterNational Institute for Materials Science (NIMS)TsukubaJapan
  2. 2.School of Science and EngineeringKinki UniversityHigashi OsakaJapan

Personalised recommendations