Skip to main content
Log in

Technical and Economical Aspects of Current Thermal Barrier Coating Systems for Gas Turbine Engines by Thermal Spray and EBPVD: A Review

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The most advanced thermal barrier coating (TBC) systems for aircraft engine and power generation hot section components consist of electron beam physical vapor deposition (EBPVD) applied yttria-stabilized zirconia and platinum modified diffusion aluminide bond coating. Thermally sprayed ceramic and MCrAlY bond coatings, however, are still used extensively for combustors and power generation blades and vanes. This article highlights the key features of plasma spray and HVOF, diffusion aluminizing, and EBPVD coating processes. The coating characteristics of thermally sprayed MCrAlY bond coat as well as low density and dense vertically cracked (DVC) Zircoat TBC are described. Essential features of a typical EBPVD TBC coating system, consisting of a diffusion aluminide and a columnar TBC, are also presented. The major coating cost elements such as material, equipment and processing are explained for the different technologies, with a performance and cost comparison given for selected examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. S.M. Meier, D.K. Gupta, and K.D. Sheffler, Ceramic Thermal Barrier Coatings for Commercial Gas Turbine Engines, J. Metal., (1991), 43(3), p 50-53

    CAS  Google Scholar 

  2. A. Maricocchi, A. Barz, and D. Wortman, PVD TBC Experience on GE Aircraft Engines, Thermal Barrier Coating Workshop, NASA Lewis Research Center, Cleveland, OH, March 27-29, NASA Conference Publication, 1995, 3312, p 79-90

  3. D.V. Rigney, R. Viguie, D.J. Wortman, and D.W. Skelly, PVD Thermal Barrier Coating Applications and Process Development for Aircraft Engines, J. Therm. Spray Technol., 1997, 6(2), p 167

    Google Scholar 

  4. D. Zhu, J.A. Nesbitt, C.A. Barrett, T.R. McCue, R.A. Miller, Furnace Cyclic Oxidation Behavior of Multicomponent Low Conductivity Thermal Barrier Coatings, J. Therm. Spray Technol., 2004, 13(1), p 84-92

    CAS  Google Scholar 

  5. D. Stöver, G. Pracht, H. Lehmann, M. Dietrich, J-E. Döring, R. Vaßen, New Material Concepts for the Next Generation of Plasma-Sprayed Thermal Barrier Coatings, J. Therm. Spray Technol., 2004, 13(1), p 76-83

    Article  Google Scholar 

  6. F.H. Stott, Elevated Temperature Coatings, Science and Technology, Vol. 11. The Minerals, Metals and Materials Society, 1996, p 151-161

  7. The Oxide Handbook, G.V Samsonov, Ed., IFI/Plenum, New York, 1982

  8. P.K. Wright, A.G. Evans, Mechanisms Governing the Performance of Thermal Barrier Coatings, Curr. Opin. Solid State Mater. Sci. (1999), 4, p 255-265

    Article  CAS  Google Scholar 

  9. S. Alperine, M. Derrien, Y. Jaslier, and R. Mevrel, Thermal Barrier Coatings—The Thermal Conductivity Challenge, AGARD Report 823 “Thermal Barrier Coatings,” 15-16 October 1997, p 1.1-1.10

  10. V. Teixeira, M. Andritschky, H. Gruhn, W. Maliener, H.P. Buchkremer, D. Stoever, Failure of Physically Vapor Deposition/Plasma-Sprayed Thermal Barrier Coatings During Thermal Cycling, J. Therm. Spray Technol., 2000, 9(2), p 191-197

    Article  CAS  Google Scholar 

  11. J.A. Haynes, M.K. Ferber, W.D. Porter, Thermal Cycling Behavior of Plasma-Sprayed Thermal Barrier Coatings with Various MCrAlX Bond Coats, J. Therm. Spray Technol., 2000, 9(1), p 38-48

    Article  CAS  Google Scholar 

  12. E.H. Jordan, L. Xie, M. Gell, N.P. Padture, B. Cetegen, A. Ozturk, J. Roth, T.D. Xiao, P.E.C. Bryant, Superior Thermal Barrier Coatings Using Solution Precursor Plasma Spray, J. Therm. Spray Technol., 2004, 13(1), p 57-65

    CAS  Google Scholar 

  13. T.A. Taylor, US Patent 5,073,433, Dec 17, 1991

  14. T.A. Taylor, D.L. Appleby, A.E. Weatherill, J. Griffiths, Plasma Sprayed Yttria-Stabilized Zirconia Coatings: Structure-Property Relationships, Surf. Coat. Technol., (1990), 43/44, p 470-480

    Article  Google Scholar 

  15. A. Feuerstein and A. Bolcavage, Thermal Conductivity of Plasma and EBPVD Thermal Barrier Coatings, Proceedings ASM International Surface Engineering Congress 2004, Orlando, Florida

  16. R.E. Taylor, Thermal Transport Property and Contact Conductance Measurements of Coatings and Thin Films, Int. J. Thermophys., (1998), 19(3), p 931-940

    Article  CAS  Google Scholar 

  17. W. Chi, S Sampath, H. Wang, Ambient and High-Temperature Thermal Conductivity of Thermal Sprayed Coatings, J. Therm. Spray Technol., 2006, 15(4), p 773-778

    Article  CAS  Google Scholar 

  18. F. Cernuschi et al., Studies of the Sintering Kinetics of thick TBCs by Thermal Diffusivity Measurements, J. Euro. Ceram. Soc., 2005, 25, p 393-400

    Google Scholar 

  19. A. Flores Renteria et al., Effect of Morphology on Thermal Conductivity of EB-PVD PYSZ TBCs, Surf. Coat. Technol., 2006, 201, p 2611-2620

    Google Scholar 

  20. F.S Petit and G.W. Goward, Oxidation—Corrosion-Erosion Mechanisms of Environmental degradation of High Temperature Materials. Coatings for High Temperature Processes, E. Lang, Ed., Applied Science Publishers, 1985

  21. R. Bouchet, R. Mevrel, Influence of Platinum and Palladium on Diffusion in bêta-NiAl phase, Defect Diffusion Forum, (2005), 237-240, p 238-245

    CAS  Google Scholar 

  22. D.K Das, Vakil Singh, and S.V. Joshi, The Cylic Oxidation Performance of Aluminide and Pt-Aluminide Coatings on Cast i-Based Superalloy CM-247, JOM-e, 52(1), 2000

  23. F.P. Talboom et al., US Patent 3,542.530, Nov 24, 1970

  24. D. Evans et al., US Patent 3,676,085, July 11, 1972

  25. G.W. Goward et al., US Patent 3,754,903, Aug 28, 1973

  26. Union Carbide Patent US 3,470,347, Sep 30, 1969

  27. J. Foster et al., US patent 5,558,758, Sep 24, 1996 and 5,824,205, Oct 20, 1998

  28. T. Koomparkping, S. Damrongrat, P. Niranatlumpong, Al-Rich Precipitation in CoNiCrAlY Bondcoat at High Temperature, J. Therm. Spray Technol., 2005, 14(2), p 264-267

    Article  CAS  Google Scholar 

  29. M. Schütze, Corrosion and Environmental Degradation, Vol. II, Wiley-VCH, 2000

  30. A.W. Funkenbusch, J.G. Smeggil, N.S. Bornstein, Reactive Element-Sulfur Interaction and Oxide Scale Adherence, Metall. Trans. (1985), 16A, p 1164-1166

    CAS  Google Scholar 

  31. J.G. Smeggil, A.J. Shuskus, The Oxidation Behavior of CoCrAlY, CoCrAl and Yttrium-Implanted CoCrAl Alloys Compared and Contrasted, Surf. Coat. Technol. (1987), 32, p 57-68

    Article  CAS  Google Scholar 

  32. A.S. Kahn, C.E. Lowell, C.A. Barrett, The Effect of Zirconium on the Isothermal Oxidation of Nominal Ni-14Cr-24Al Alloys, J. Eelectrochem. Soc. 1980, 127(3), p 670-679

    Article  CAS  Google Scholar 

  33. J.R. Blachere, E. Schumann, G.H. Meier, F.S. Pettit, Textures of Alumina Scales on FeCrAl Alloys, Scripta Mater., (2003), 49, p 909-912

    Article  CAS  Google Scholar 

  34. N. Czech, F. Schmitz, W. Stamm, Improvement of MCrAlY Coatings by Addition of Rhenium, Surf. Coat. Technol. (Switzerland) 1994, 68/69, p 17-21

    Article  CAS  Google Scholar 

  35. J.L. Smialek, Improved Oxidation Life of Segmented Plasma Sprayed 8YSZ Thermal Barrier Coatings, J. Therm. Spray Technol. 2004, 13(1), p 66-75

    CAS  Google Scholar 

  36. M.H. Weatherly and R.C. Tucker, Union Carbide, US Patent 4,095,003, Jun 13, 1978

  37. M. Mede, et al., New and Affordable Technical Solutions for Turbine Component Coatings, Proceedings ASM International Surface Engineering Congress 2004, Orlando, FL, p 189-196

Download references

Acknowledgments

The authors would like to thank Dan Fillenwarth, Dan Helm, and Daming Wang for their input and valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Feuerstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feuerstein, A., Knapp, J., Taylor, T. et al. Technical and Economical Aspects of Current Thermal Barrier Coating Systems for Gas Turbine Engines by Thermal Spray and EBPVD: A Review. J Therm Spray Tech 17, 199–213 (2008). https://doi.org/10.1007/s11666-007-9148-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-007-9148-y

Keywords

Navigation