Journal of Thermal Spray Technology

, Volume 17, Issue 1, pp 115–123

Application of Suspension Plasma Spraying (SPS) for Manufacture of Ceramic Coatings

  • Holger Kassner
  • Roberto Siegert
  • Dag Hathiramani
  • Robert Vassen
  • Detlev Stoever
Peer Reviewed

Abstract

Conventional thermal spray processes as atmospheric plasma spraying (APS) have to use easily flowable powders with a size up to 100 μm. This leads to certain limitations in the achievable microstructural features. Suspension plasma spraying (SPS) is a new promising processing method which employs suspensions of sub-micrometer particles as feedstock. Therefore much finer grain and pore sizes as well as dense and also thin ceramic coatings can be achieved. Highly porous coatings with fine pore sizes are needed as electrodes in solid-oxide fuel cells. Cathodes made of LaSrMn perovskites have been produced by the SPS process. Their microstructural and electrochemical properties will be presented. Another interesting application is thermal barrier coating (TBC). SPS allows the manufacture of high-segmented TBCs with still relatively high porosity levels. In addition to these specific applications also the manufactures of new microstructures like nano-multilayers and columnar structures are presented.

Keywords

coatings for gas turbine components fuel cells nanostructured materials new structures segmented coatings suspension plasma spraying 

References

  1. 1.
    J. Oberste Berghaus, S. Bouaricha, J.-G. Legoux, and C. Moreau, Injection Conditions and In-Flight States in Suspension Plasma Spraying of Alumina and Zirconia Nano-Ceramics, Thermal Spray 2005: Explore its Surface Potential!, E. Lugscheider, Ed., May 2-4, 2005 (Basel, Switzerland), ASM International, 2005, p 512-518Google Scholar
  2. 2.
    J. Oberste Berghaus, S. Bouaricha, J.-G. Legoux, C. Moreau, and T. Chraska, Suspension Plasma Spraying of Nano-Ceramics Using an Axial Injection Torch, Thermal Spray 2005: Explore its Surface Potential!, E. Lugscheider, Ed., May 2-4, 2005 (Basel, Switzerland), ASM International, 2005, p 1434-1440Google Scholar
  3. 3.
    C. Delbos, J. Fazilleau, V. Rat, J.F. Coudert, P. Fauchais, B. Pateyron, Phenomena Involved in Suspension Plasma Spraying, Part 1: Suspension Injection and Behaviour, Plasma Chem. Plasma Process., 2006, 26(4), 371–391CrossRefGoogle Scholar
  4. 4.
    C. Delbos, J. Fazilleau, V. Rat, J.F. Coudert, P. Fauchais, B. Pateyron, Phenomena Involved in Suspension Plasma Spraying, Part 2: Zirconia Particle Treatment and Coating Formation, Plasma Chem. Plasma Process., 2006, 26(4), 393–414CrossRefGoogle Scholar
  5. 5.
    H. Gleiter, Nanostructured Materials: Basic Concepts and Microstructure, Acta Mater. 2000, 48, 1–29CrossRefGoogle Scholar
  6. 6.
    D. Vollath, D.V. Szabó, Nanocoated Particles: A Special Type of Ceramic Powders, Nanostruct. Mater. 1994, 4(8), 927–938CrossRefGoogle Scholar
  7. 7.
    J. Freim, J. McKittrick, Microwave Sintering of Nanocrystalline γ-Al2O3, Nanostruct. Mater., 1994, 4(4), 371–385CrossRefGoogle Scholar
  8. 8.
    A. Rösler, G. Skillas, S.E. Pratsinis, Nanopartikel – Material der Zukunft (Nano-Particles-Material for the Future), Chemie in unserer Zeit, 2001, 35, 32–41, in GermanCrossRefGoogle Scholar
  9. 9.
    J. Karthikeyan, C.C. Berndt, S. Reddy, J.-Y. Wang, A.H. King, H. Herman, Nanomaterials Deposits Formed by DC Plasma Spraying of Liquid Feedstocks, J. Am. Ceram. Soc., 1998, 81(1), 121–128CrossRefGoogle Scholar
  10. 10.
    P. Blazdell, S. Kuroda, Plasma Spraying of Submircron Ceramic Suspensions Using a Continuous Ink Jet Printer, Surf. Coat. Technol., 2000, 123, 239–246CrossRefGoogle Scholar
  11. 11.
    H. Gleiter, Nanostructured Materials: State of the Art and Perspectives, Nanostruct. Mater., 1995, 6, 3–14CrossRefGoogle Scholar
  12. 12.
    H. Gleiter, Nanostructured Materials, Adv. Mater., 1992, 7/8, 474–480CrossRefGoogle Scholar
  13. 13.
    H. Hahn, K.A. Padmanabhan, Mechanical Response of Nanostructured Materials, Nanostruct. Mater. 1995, 6(1), 191–200CrossRefGoogle Scholar
  14. 14.
    L. Xie, X. Ma, E.H. Jordan, N.P. Padture, D.T. Xiao, M. Gell, Deposition Mechanisms of Thermal Barrier Coatings in the Solution Precursor Plasma Spray Process, Surf. Coat. Technol. 2004, 177-178, 103–107CrossRefGoogle Scholar
  15. 15.
    M. Gell, L. Xie, X. Ma, E.H. Jordan, N.P. Padture, Highly Durable Thermal Barrier Coatings Made by the Solution Precursor Plasma Spray Process, Surf. Coat. Technol., 2004, 177-178, 97–102CrossRefGoogle Scholar
  16. 16.
    R. Siegert, A Novel Process for the Liquid Feedstock Plasma Spray of Ceramic Coatings with Nanostructural Features, Juelich Press, Germany, 2006, Jül-4205Google Scholar
  17. 17.
    L. Bianchi, A.C. Leger, M. Vardelle, A. Vardelle, P. Fauchais, Splat Forming and Cooling of Plasma-Sprayed Zirconia, Thin Solid films, 1997, 305, 35–47CrossRefGoogle Scholar

Copyright information

© ASM International 2007

Authors and Affiliations

  • Holger Kassner
    • 1
  • Roberto Siegert
    • 1
  • Dag Hathiramani
    • 1
  • Robert Vassen
    • 1
  • Detlev Stoever
    • 1
  1. 1.IEF-1Forschungszentrum Jülich GmbHJuelichGermany

Personalised recommendations