Journal of Thermal Spray Technology

, Volume 16, Issue 5–6, pp 933–939 | Cite as

Detection of Wear in One-Cathode Plasma Torch Electrodes and its Impact on Velocity and Temperature of Injected Particles

  • Georg Mauer
  • José-Luis Marqués-López
  • Robert Vaßen
  • Detlev Stöver
Peer Reviewed


Wear at the electrode surfaces of a one-cathode plasma torch changes the characteristic fluctuation pattern of the plasma jet. This affects the trajectory of the particles injected into the plasma jet in a non-controllable way, which degrades the reproducibility of the process. Time-based voltage measurements and Fourier analysis were carried out on a one-cathode F4 torch at different wear conditions to determine the evolution of wear dependant characteristics. A significant correlation is observed between increasing torch wear and decreasing voltage roughness and high frequency noise. Furthermore, by means of particle diagnostic systems, the change in the particle velocity and temperature has been measured. The variations of the particle characteristics are significant and thus an influence on the sprayed coating microstructure is to be expected.


electrode particle diagnostics plasma spraying process monitoring torch voltage wear 



The authors would like to thank Mr. K.-H. Rauwald (IEF-1, Forschungszentrum Jülich, Germany) for his support in performing the measurements.


  1. 1.
    J.F. Coudert, M.P. Planche, P. Fauchais, 1996 Characterization of D.C. Plasma Torch Voltage Fluctuations. Plasma Chem. Plasma Process., 16(Suppl. 1), 211S-227SGoogle Scholar
  2. 2.
    Z. Duan, J. Heberlein, 2002 Arc Instabilities in a Plasma Spray Torch. J. Thermal Spray Technol., 11(1), 44-51CrossRefGoogle Scholar
  3. 3.
    W. Zhao, K. Tian, H. Tang, D. Liu, G. Zhang, 2002 Experimental Studies on the Unsteadiness of Atmospheric Pressure Plasma Jet. J. Phys. D: Appl. Phys., 35, 2815-2822CrossRefGoogle Scholar
  4. 4.
    J.F. Bisson, B. Gauthier, C. Moreau, 2003 Effect of Plasma Fluctuations on In-Flight Particle Parameters. J. Thermal Spray Technol., 12(1), 38-43CrossRefGoogle Scholar
  5. 5.
    J.F. Bisson, C. Moreau, 2003 Effect of Plasma Fluctuations on In-Flight Particle Parameters: Part II. J. Thermal Spray Technol., 12(2), 258-264CrossRefGoogle Scholar
  6. 6.
    L. Leblanc, C. Moreau, 2002 The Long-Term Stability of Plasma Spraying. J. Thermal Spray Technol., 11(3), 380-386CrossRefGoogle Scholar
  7. 7.
    M. Vyšohlíd and J. Heberlein, Investigation of Arc Voltage Fluctuation in a Plasma Torch SG-100 operated with Ar/H2, Thermal Spray 2004: Advances in Technology and Application, ASM International, May 10-12, (Osaka, Japan), ASM International, 2004Google Scholar
  8. 8.
    H. Weckmann, S. Fiebig, A. Syed, and J. Arnold, Investigation of Time-Dependent Instabilities of Plasma Spraying Process Using Online Diagnostic Systems, Building on 100 Years of Success, B.R. Marple, M.M. Hyland, Y.-C. Lau, R.S. Lima, and J. Voyer, Eds., May 15-18, (Seattle, WA, USA), ASM International, 2006Google Scholar
  9. 9.
    K. Ramachandran, J.-L. Marqués, R. Vaßen, D. Stöver, 2006 Modelling of Arc Behaviour inside a F4 APS Torch, The Long-Term Stability of Plasma Spraying. J. Phys. D: App. Phys., 39(15), 3323-3331CrossRefGoogle Scholar
  10. 10.
    W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vettering, 1992 Numerical Recipes in C, 2nd ed. Cambridge University Press, Cambridge (UK)Google Scholar
  11. 11.
    M.I. Boulos, P. Fauchais, E. Pfender, 1994 Thermal Plasmas. Fundamentals and Applications. Plenum Press, New York, NY, USAGoogle Scholar

Copyright information

© ASM International 2007

Authors and Affiliations

  • Georg Mauer
    • 1
  • José-Luis Marqués-López
    • 1
  • Robert Vaßen
    • 1
  • Detlev Stöver
    • 1
  1. 1.Institut für Energieforschung IEF-1, Forschungszentrum Jülich GmbHJülichGermany

Personalised recommendations