Journal of Thermal Spray Technology

, Volume 16, Issue 4, pp 512–523 | Cite as

Clogging and Lump Formation During Atmospheric Plasma Spraying with Powder Injection Downstream the Plasma Gun

  • Isabelle Choquet
  • Stefan Björklund
  • Jimmy Johansson
  • Jan Wigren
Peer Reviewed


This study aimed to numerically and experimentally investigate lump formation during atmospheric plasma spraying with powder injection downstream the plasma gun exit. A first set of investigations was focused on the location and orientation of the powder port injector. It turned out impossible to keep the coating quality while avoiding lumps by simply moving the powder injector. A new geometry of the powder port ring holder was designed and optimized to prevent nozzle clogging, and lump formation using a gas screen. This solution was successfully tested for applications with Ni-5wt.%Al and ZrO2-7wt.%Y2O3 powders used in production. The possible secondary effect of plasma jet shrouding by the gas screen, and its consequence on powder particles prior to impact was also studied.


influence of spray parameters shrouded spraying spray deposition 


Latin notations


specific heat capacity of the powder particle, J kg−1 K−1

C, C, Cμ

constants of the RNG k-ε model, dimensionless


diffusion coefficient of species i in the mixture, m2 s−1


total specific energy of the fluid \( e_{{\text{T}}} = h - p\uprho ^{{ - 1}} + \raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}u^{2} \), J kg−1

\( \ifmmode\expandafter\vec\else\expandafter\vec\fi{F}_{{{\text{ext}}}} \)

external forces applied on the fluid, N m−3


rate of turbulent kinetic energy generated by velocity gradients, kg m−1 s−3


specific enthalpy of the fluid \( h = {\sum {Y_{i} h} }_{i} \), J kg−1


specific enthalpy of the species i, J kg−1

\( \ifmmode\expandafter\vec\else\expandafter\vec\fi{J}_{i} \)

diffusion flux of species i in the mixture, kg m−2 s−1


turbulent kinetic energy, m2 s−2


static pressure of the fluid, Pa


turbulent Prandtl number


radial position (at nozzle outlet), m


nozzle radius at the plasma gun exit, m


rate of dissipation rate ε generated by rapid strain and streamline curvature, kg m−1 s−4


ratio between the flux of angular and of axial momentum, or swirl coefficient


energy source term due to the interaction between fluid and powder particles, J kg−1


mass source term due to the interaction between fluid and powder particles, kg m−3 s−1


turbulent Schmidt number


temperature of the fluid, K


maximum temperature T (at nozzle outlet), K


melting temperature of the powder particle, K


wall temperature, K


velocity norm of the fluid, m s−1

\( \ifmmode\expandafter\vec\else\expandafter\vec\fi{u} \)

velocity vector of the fluid, m s−1


maximum velocity norm (at nozzle outlet), m s−1


mass fraction of species i

Greek notations


inverse effective Prandtl number for the turbulent kinetic energy k


inverse effective Prandtl number for the turbulent dissipation rate ε


latent heat of fusion of the powder particle, J kg−1


dissipation rate of turbulent kinetic energy, m2 s−3


laminar thermal conductivity of the fluid, W m−1 K−1


turbulent thermal conductivity of the fluid, W m−1 K−1


effective thermal conductivity of the fluid κeff = κ t  + κ, W m−1 K−1


thermal conductivity of the powder particle, W m−1 K−1


laminar dynamic viscosity, kg m−1 s−1


turbulent dynamic viscosity, kg m−1 s−1


effective dynamic viscosity μ eff  = μ t  + μ, kg m−1 s−1


density of the fluid, kg m−3


density of the powder particle, kg m−3

\( \overline{\overline \uptau } \)

laminar viscous stress tensor, kg m−1 s−2

\( \overline{\overline \uptau } _{{\text{t}}} \)

Reynolds stress tensor, kg m−1 s−2

\( \overline{\overline \uptau } _{{{\text{eff}}}} \)

effective stress tensor \( \overline{\overline \uptau } _{{{\text{eff}}}} = \overline{\overline \uptau } _{{\text{t}}} + \overline{\overline \uptau } \), kg m−1 s−2

Mathematical symbols

\( \overline{\overline I} \)

unit tensor


partial derivative with respect to time

\( \otimes \)

tensorial product

\( \nabla \cdot \)

divergence operator

\( {\overrightarrow{\nabla }} \)

gradient operator



The authors wish to acknowledge Mats-Olov Hansson, Carina Karlsson, Svante Magnusson, Peter Mårtensson, and Raymond Zakrisson, Volvo Aero Corporation, as well as Mats Högström and Fouzi Bahbou, University West, for their valuable contribution to the experimental investigations.


  1. 1.
    C. Langhammer, “Optimisation of the deposition efficiency and deposition rate for PM 919-20 sprayed with the multi-local radial injection system,” Report TC-02-227, Volvo Aero Corporation, 2002Google Scholar
  2. 2.
    I. Choquet, S. Björklund, J. Johansson, and J. Wigren, Nozzle exit geometry and lump formation in APS, International Thermal Spray Conference, E. Lugscheider, Ed., May 2-4, 2005 (Basel, Switzerland), DVS-Verlag GmbH, ISBN: 3-87155-793-5, 2005Google Scholar
  3. 3.
    I. Choquet, S. Björklund, J. Johansson, and J. Wigren, New powder port holder geometry to avoid lump formation in APS, 17th International Symposium on Plasma Chemistry, Ed. J. Mostaghimi, T.W. Coyle, V.A. Pershin, and H.R. Salimi Jazi, August 7-12, 2005 (Torronto, Canada), 2005Google Scholar
  4. 4.
    V. Kankanala and R. Kashani, “Control modelling and regulation of thermal spraying process, Proceedings of the 6th National Thermal Spray Conference,” Anaheim, CA, USA, 7-11 June 1993, C.C. Berndt, Ed., (Pub.) ASM International, OH, p 225-230 (1993)Google Scholar
  5. 5.
    E. Pfender, J. Fincke, R. Spores, Entrainment of Cold Gas into Thermal Plasma Jets, Plasma Chemistry and Plasma Processing, 1991, 11(4): 529–543CrossRefGoogle Scholar
  6. 6.
    J.R. Fincke and C.G. Pentecost, “Laminar to turbulent transition and entrainment in thermal plasma jets, HTD-Vol161, Heat Transfer in Thermal Plasma Processing,” ASME, 1991, p 101-106Google Scholar
  7. 7.
    J.O. Hinze, Turbulence, McGraw-Hill Publishing Co., New York, 1975Google Scholar
  8. 8.
    M.I. Boulos, P. Fauchais, and E. Pfender, Thermal plasmas: Fundamentals and Applications, Vol. 1, Plenum, New York, 1994Google Scholar
  9. 9.
    R. Bolot, J. Li, and C. Coddet, Modeling of thermal plasma jets: a comparison between PHEONICS and FLUENT, Proceedings of the International Thermal Spray Conference, ITSC 2004, Osaka, Japan, 10-12 May 2004, Thermal Spray Solutions: Advances in Technology and Application, ASM International, CD-Rom, ISBN: 0-87170-809-4, 2004, p 764-769 Google Scholar
  10. 10.
    R. Bolot, J. Li, and C. Coddet, Some key advices for modeling of plasma jets using Fluent, Proceedings of the International Thermal Spray Conference, ITSC 2005, 2-4 May 2005, (Basel, Switzerland), DVS Verlag GmbH, Düsseldorf, Germany, CD-Rom, ISBN: 3-87155-793-5, 2005Google Scholar
  11. 11.
    J-M. Bauchire, Modélisation numérique d’une torche de projection à plasma : influence de la géométrie et de la turbulence sur les propriétés du plasma, PhD. Thesis, University Paul Sabatier, Toulouse, France, 1997Google Scholar
  12. 12.
    C.H. Chang, J.D. Ramshaw, Numerical Simulation of Argon Plasma Jets Flowing into Cold Air, Plasma Chemistry and Plasma Processing, 1993, 13(2): 189–209CrossRefGoogle Scholar
  13. 13.
    S.A. Wurtzke, E. Pfender, E.R.G. Eckert, Study of Electric Arc Behaviour with Superimposed Flow, AIAA Journal, 1967, 5(4): 707–717CrossRefGoogle Scholar
  14. 14.
    A. Vardelle, M. Vardelle, P. Fauchais, P. Proulx, and M.I. Boulos, “Loading effect by oxide powders in DC plasma jets,” Proceedings of the 5th National Thermal Spray Conference, Orlando, FL, p 543-547 (1992)Google Scholar
  15. 15.
    A. Vardelle, M. Vardelle, K-I. Li, M. Vardelle, and P. Fauchais, “Injection and trajectories of particles in D.C. plasma spray processes, Proceeding of the 12th International Symposium on Plasma Chemistry,” 21-25 August 1995, Minneapolis, MN, USA, J.V. Heberlein, T.W. Ernie, J.T. Roberts, Ed, p 1343-1348 (1995)Google Scholar
  16. 16.
    P. Nylén, The prediction of Fluid flow, particle in-flight and coating characteristics in atmospheric plasma spraying, PhD thesis, Chalmers University, Sweden, 1999Google Scholar
  17. 17.
    H.C. Chen, Z. Duan, J. Heberlein, and E. Pfender, “Influence of shroud gas flow and swirl magnitude on arc stability and coating quality in plasma spray,” Thermal Spray: Practical Solution for Engineering Problems, C.C. Berndt, Ed., (pub.) ASM International, Materials Park, OH, USA, 1996, p 553-561Google Scholar
  18. 18.
    M. Friis, A methodology to control the microstructure of plasma sprayed coatings, PhD thesis, Lund University, Sweden, 2002Google Scholar
  19. 19.
    C. Moreau, P. Gougeon, M. Lamontagne, V. Lacasse, G. Vaudreuil, and P. Cielo, On-line control of plasma spraying process by monitoring the temperature, velocity, and trajectory of in-flight particles, Thermal Spray: Industrial Applications, 1994, p 431-437Google Scholar

Copyright information

© ASM International 2007

Authors and Affiliations

  • Isabelle Choquet
    • 1
  • Stefan Björklund
    • 1
  • Jimmy Johansson
    • 2
  • Jan Wigren
    • 2
  1. 1.Department TMDUniversity WestTrollhättanSweden
  2. 2.Volvo Aero CorporationTrollhättanSweden

Personalised recommendations