Tensile behavior and cyclic creep of continuous fiber-reinforced glass matrix composites at room and elevated temperatures

  • A. R. Boccaccini
  • G. West
  • J. Janczak
  • M. H. Lewis
  • H. Kern
Testing and Evaluation


In this study we investigated the stress-strain behavior at room and elevated temperatures and the tensile creep and cyclic creep response of a unidirectional SiC fiber-reinforced aluminosilicate glass matrix composite. The interfacial condition of the as-received material was measured by a push-out indentation technique. The stress-strain behavior was that expected for this kind of composite, i.e. “pseudoductile” behavior with extensive fiber “pull-out” at room temperature and brittle failure at intermediate temperatures (750 °C) due to oxidation embrittlement. The stiffness of the composite at 750°C was analyzed for different loading rates, highlighing the influence of the loading rate on apparent composite stiffness, due to matrix softening. The creep studies were conducted at temperatures above and below the softening temperature of the glass (T g, 745 °C) in air. The cyclic creep experiments showed the existence of extensive viscous strain recovery during the unloading period. The creep strain recovery was quantified using strain recovery ratios. These ratios showed a slight dependence on the temperatures investigated (700 and 750 °C). The crept composites retained their “graceful” fracture behavior only partially after testing, indicating that oxidation of the fiber/matrix interface due to oxygen diffusion through the matrix occurred in the peripheral area of the samples.


composites cyclic creep glass matrix strain recovery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.M. Prewo and J.J. Brennan, High-Strength Silicon Carbide Fibre-Reinforced Glass-Matrix Composites, J. Mater. Sei., Vol 15, 1980, p 463–468CrossRefGoogle Scholar
  2. 2.
    A.G. Evans and D. B. Marshall, The Mechanical Behaviour of Ceramic Matrix Composites, Overview 85, Acta Metall., Vol 37, 1989, p 2657–2683Google Scholar
  3. 3.
    K.M. Prewo, Fibre Reinforced Glasses and Glass-Ceramics, Glasses and Glass-Ceramics, M.H. Lewis, Ed., Chapman and Hall, London, 1989, p 336–368Google Scholar
  4. 4.
    J.J. Brennan, Interfacial Chemistry and Bonding in Fibre Reinforced Glass-Ceramic Matrix Composites, Tailoring Multiphase and Composite Ceramics, R.E. Tressler, G.L. Messing, and C.G. Newnham.Ed., Plenum Press, 1988, p 387–00Google Scholar
  5. 5.
    V.S.R. Murthy, L. Jie, and M.H. Lewis, Interfacial Microstructure and Crystallisation in SiC-Glass-Ceramic Composites, Ceram. Eng. Sei. Proc, Vol 10,1989, p 938–951Google Scholar
  6. 6.
    S.M. Bleay, V.D. Scott, B. Harris, R.G. Cooke, and F.A. Habib, Interface Characterisation and Fracture of Calcium Aluminosilicate Glass-Ceramic Reinforced with Nicalon Fibres, J. Mater. Sei., Vol 27, 1992, p 2811–2822CrossRefGoogle Scholar
  7. 7.
    A.G. Evans and F.W. Zok, Review: The Physics and Mechanics of Fibre-Reinforced Brittle Matrix Composites, J. Mater. Sei., Vol 29, 1994, p 3857–3896CrossRefGoogle Scholar
  8. 8.
    X. Wu and J.W. Holmes, Tensile Creep and Creep-Strain Recovery Behavior of Silicon Carbide Fiber/Calcium Aluminosilicate Matrix Ceramic Composites, J. Am. Ceram. Soc, Vol 76,1993, p 2695–2700CrossRefGoogle Scholar
  9. 9.
    Y.H. Park and J.W. Holmes, Finite Element Modelling of Creep Deformation in Fibre-Reinforced Ceramic Composites, J. Mater. Sei., Vol 27, 1992, p 6341–6351CrossRefGoogle Scholar
  10. 10.
    G. West, A.R. Boccaccini, and D.M.R. Taplin, Creep and Creep-Fatigue Behaviour of Continuous Fibre Reinforced Glass-Ceramic Matrix Composites, Mater.wiss., Vol 26, 1995, p 368–373CrossRefGoogle Scholar
  11. 11.
    G. West, A.R. Boccaccini, D.M.R. Taplin, and M.H. Lewis, Cyclic Creep Response of Continuous Fibre Reinforced Glass-Ceramic Matrix Composites, Proc. Seventh European Conference on Composite Materials, Vol 1, Woodhead Publ. Ltd., London, 1996, p 455–460Google Scholar
  12. 12.
    E.Y. Sun, S.R. Nutt, and J.J. Brennan, Flexura! Creep of Coated SiC-Fiber Reinforced Glass-Ceramic Composites, J. Am. Ceram. Soc, Vol 78, 1995, p 1233–1239CrossRefGoogle Scholar
  13. 13.
    B. Meier, C. Franz, G. Grathwohl, H. Iwanek, and K. Przemeck; Creep Behaviour of SiC-Fibre (Nicalon) Reinforced Glasses, Advanced Structural Fibre Composites, P. Vincenzini, Ed., Techna Sri, Faenza, Italy, 1995, p 743–750Google Scholar
  14. 14.
    “Technical Glasses,” product information, Schott Glaswerke, Mainz, Germany, 1990Google Scholar
  15. 15.
    W. Beier, J. Heinz, and W. Pannhorst, Langfaservertärkte Gläser und Glaskeramiken-eine neue Klasse von Konstruktionswerk-stoffen, VD1 Berichte, 1021, 1993, p 255–267 (in German)Google Scholar
  16. 16.
    J. Janczak, G. Buerki, and L. Rohr, Interfacial Characterization of MMCs and CMCs using a SEM-Pushout Technique, Key Enginering Materials, Tran Tech Publications, Switzerland, Vol 127-131, 1997, p 623–630Google Scholar
  17. 17.
    J.W. Holmes, Tensile Creep Behaviour of a Fibre Reinforced SiC-Si3N4 Composite, J. Mater. Sei., Vol 26, 1991, p 1808–1814CrossRefGoogle Scholar
  18. 18.
    G. West, Ph.D. thesis, University of Warwick, Coventry, England, in preparation, 1997Google Scholar
  19. 19.
    S. Sutherland, K.P. Plucknett, and M.H. Lewis, High Mechanical and Thermal Stability of Silicate Matrix Composites, Compos. Eng., Vol 5,1995, p 1367–1378Google Scholar

Copyright information

© ASM International 1997

Authors and Affiliations

  • A. R. Boccaccini
    • 1
  • G. West
    • 2
  • J. Janczak
    • 3
  • M. H. Lewis
    • 2
  • H. Kern
    • 1
  1. 1.Technische Universität Ilmenau, Fachgebiet WerkstofftechnikIlmenauGermany
  2. 2.Centre for Advanced Materials, Department of PhysicsUniversity of WarwickCoventryEngland
  3. 3.Swiss Federal Laboratories for Materials Testing and ResearchThunSwitzerland

Personalised recommendations